首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial compartmentalization of PKA signaling is mediated by A-kinase anchoring proteins (AKAPs). Here, we investigated the role of PKA anchoring to AKAPs in different stages of the memory process (acquisition, consolidation, retrieval and extinction) using contextual fear conditioning, a hippocampus-dependent learning task. Mice were injected intracerebroventricularly or intrahippocampally with the membrane permeable PKA anchoring disrupting peptides St-Ht31 or St-superAKAP-IS at different time points during the memory process. Blocking PKA anchoring to AKAPs resulted in an impairment of fear memory consolidation. Moreover, disrupted PKA anchoring promoted contextual fear extinction in the mouse hippocampus. We conclude that the temporal and spatial compartmentalization of hippocampal PKA signaling pathways, as achieved by anchoring of PKA to AKAPs, is specifically instrumental in long-term contextual fear memory consolidation and extinction, but not in acquisition and retrieval.  相似文献   

3.
Methylphenidate (MPH, Ritalin) is a norepinephrine and dopamine transporter blocker that is widely used in humans for treatment of attention deficit disorder and narcolepsy. Although there is some evidence that targeted microinjections of MPH may enhance fear acquisition, little is known about the effect of MPH on fear extinction. Here, we show that MPH, administered before or immediately following extinction of contextual fear, will enhance extinction retention in C57BL/6 mice. Animals that received MPH (2.5-10 mg/kg) before an extinction session showed decreased freezing response during extinction, and the effect of the 10 mg/kg dose on freezing persisted to the next day. When MPH (2.5-40 mg/kg) was administered immediately following an extinction session, mice that received MPH showed dose-dependent decreases in freezing during subsequent tests. MPH administered immediately after a 3-min extinction session or 4 h following the first extinction session did not cause significant differences in freezing. Together, these findings demonstrate that MPH can enhance extinction of fear and that this effect is sensitive to dose, time of injection, and duration of the extinction session. Because MPH is widely used in clinical treatments, these experiments suggest that the drug could be used in combination with behavioral therapies for patients with fear disorders.  相似文献   

4.
Accumulating evidence indicates the key role of alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which alphaCaMKII may mediate extinction by using heterozygous knock-in mice with a targeted T286A mutation that prevents the autophosphorylation of this kinase (alphaCaMKII(T286A+/-)). Remarkably, partial reduction of alphaCaMKII function due to the T286A(+/-) mutation prevented the development of extinction without interfering with initial hippocampus-dependent memory formation as assessed by contextual fear conditioning and the Morris water maze. It is hypothesized that the mechanism of extinction may differ depending on the interval at which extinction training is started, being more akin to "new learning" at longer intervals and "unlearning" or "erasure" at shorter intervals. Consistent with this hypothesis, we found that extinction conducted 24 h, but not 15 min, after contextual fear training showed spontaneous recovery (reappearance of extinguished freezing responses) 21 d following the extinction, representing behavioral evidence for new learning and unlearning mechanisms underlying extinction 24 h and 15 min post-training, respectively. Importantly, the alphaCaMKII(T286A+/-) mutation blocked new learning of contextual fear memory extinction, whereas it did not interfere with unlearning processes. Our results demonstrate a genetic dissociation of new learning and unlearning mechanisms of extinction, and suggest that alphaCaMKII is responsible for extinguishing memories specifically through new learning mechanisms.  相似文献   

5.
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning.  相似文献   

6.
Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear conditioning mice with three pairings of a white noise conditional stimulus (CS) with moderate footshock, we injected the D2 antagonist, sulpiride, the D2 agonist, quinpirole, or vehicle, just before repeated CS presentations to generate extinction. We assayed fear by measuring behavioral freezing during extinction presentations and then drug-free during CS presentations 1 d later. We found that sulpiride injections before extinction training facilitated extinction memory 24 h later, while quinpirole partially blocked extinction memory compared with vehicle-injected controls. Notably, sulpiride treatment yielded significant extinction after spaced CS presentations, which yield no extinction at all in vehicle-treated mice. These findings suggest that dopamine D2-mediated signaling contributes physiological inhibition of extinction, and that D2 antagonists may be useful adjuncts to behavior therapy of human anxiety disorders.  相似文献   

7.
Recent studies focus on the functional significance of a novel form of synaptic plasticity, low-frequency stimulation (LFS)-induced synaptic potentiation in the hippocampal CA1 area. In the present study, we elucidated dynamic changes in synaptic function in the CA1 field during extinction processes associated with context-dependent fear memory in freely moving rats, with a focus on LFS-induced synaptic plasticity. Synaptic transmission in the CA1 field was transiently depressed during each extinction trial, but synaptic efficacy was gradually enhanced by repeated extinction trials, accompanied by decreases in freezing. On the day following the extinction training, synaptic transmission did not show further changes during extinction retrieval, suggesting that the hippocampal synaptic transmission that underlies extinction processes changes in a phase-dependent manner. The synaptic potentiation produced by extinction training was mimicked by synaptic changes induced by LFS (0.5 Hz) in the group that previously received footshock conditioning. Furthermore, the expression of freezing during re-exposure to footshock box was significantly reduced in the LFS application group in a manner similar to the extinction group. These results suggest that LFS-induced synaptic plasticity may be associated with the extinction processes that underlie context-dependent fear memory. This hypothesis was supported by the fact that synaptic potentiation induced by extinction training did not occur in a juvenile stress model that exhibited extinction deficits. Given the similarity between these electrophysiological and behavioral data, LFS-induced synaptic plasticity may be related to extinction learning, with some aspects of neuronal oscillations, during the acquisition and/or consolidation of extinction memory.  相似文献   

8.
Pavlovian fear conditioning is a robust and enduring form of emotional learning that provides an ideal model system for studying contextual regulation of memory retrieval. After extinction the expression of fear conditional responses (CRs) is context-specific: A conditional stimulus (CS) elicits greater conditional responding outside compared with inside the extinction context. Dorsal hippocampal inactivation with muscimol attenuates context-specific CR expression. We have previously shown that CS-elicited spike firing in the lateral nucleus of the amygdala is context-specific after extinction. The present study examines whether dorsal hippocampal inactivation with muscimol disrupts context-specific firing in the lateral amygdala. We conditioned rats to two separate auditory CSs and then extinguished each CS in separate and distinct contexts. Thereafter, single-unit activity and conditional freezing were tested to one CS in both extinction contexts after saline or muscimol infusion into the dorsal hippocampus. After saline infusion, rats froze more to the CS when it was presented outside of its extinction context, but froze equally in both contexts after muscimol infusion. In parallel with the behavior, lateral nucleus neurons exhibited context-dependent firing to extinguished CSs, and hippocampal inactivation disrupted this activity pattern. These data reveal a novel role for the hippocampus in regulating the context-specific firing of lateral amygdala neurons after fear memory extinction.  相似文献   

9.
The extracellular signal-regulated kinases (ERKs) are members of the mitogen-activated protein kinase (MAPK) superfamily of enzymes and have recently garnered considerable attention in the field of learning and memory. ERK activation has been shown to be required for the induction of long-term potentiation (LTP) in the rat hippocampus and for the formation of associative and spatial memories in both the rat and the mouse. However, the individual roles for the two isoforms of ERK have yet to be deciphered. To investigate the specific contribution of the ERK1 (p44) isoform of MAPK to mammalian learning, we performed a general behavioral and physiological characterization of mice lacking the ERK1 gene. The ERK1-null animals demonstrated significantly higher levels of activity in the open field test. However, we observed no other discernible deficits in the ERK1 knockout mice in our behavioral testing. Specifically, no differences were observed in the acquisition or retention (24 h and 2 wk after training) of either contextual or cue fear conditioning between the ERK1−/− and their wild-type littermate controls. In addition, no learning phenotype was observed in the passive avoidance test. When hippocampal slices were analyzed, we found no deficits in baseline synaptic transmission or in tetanus-induced LTP in hippocampal area CA1. We found no apparent compensatory changes in the expression of ERK2 (p42 MAPK). We conclude that hippocampus- and amygdala-dependent emotional learning does not depend critically on the activity of ERK1.  相似文献   

10.
11.
BackgroundThe pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction.MethodsMale C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N = 10–12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals.ResultsCorticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone.ConclusionsWe demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD.  相似文献   

12.
The prefrontal cortex is known to be involved in the acquisition of trace conditioning, a higher-cognitive form of Pavlovian conditioning in which a conditioned stimulus and an unconditioned stimulus are separated by a time gap. We have recently reported that medial prefrontal (mPFC) extracellular-signal regulated kinase (Erk) phosphorylation is involved in the long-term memory storage of trace fear conditioning. Because of the important role dopamine D1 receptors play in prefrontal function, such as working memory, and due to evidence that dopamine D1 receptor activity can modulate plasticity, we investigated their role in prefrontal Erk phosphorylation following trace fear conditioning. We found that inhibition of dopamine D1 receptors through intra-mPFC infusion of SCH-23390 (1 microg/0.5 microL) 15 min prior to trace fear conditioning resulted in a decrease in training-related Erk phosphorylation. Additionally, pre-training intra-mPFC infusion of SCH-23390 also resulted in the impairment of long-term retention of CS-US association. These findings implicate mPFC dopamine D1 receptor activity in the storage of long-term memory for higher-cognitive associative tasks.  相似文献   

13.
Glucocorticoid receptor activation within the basolateral amygdala (BLA) during fear conditioning may mediate enhancement in rats chronically exposed to stress levels of corticosterone. Male Sprague-Dawley rats received corticosterone (400 microg/ml) in their drinking water (days 1-21), a manipulation that was previously shown to cause hippocampal CA3 dendritic retraction. Subsequently, rats were adapted to the fear conditioning chamber (day 22), then trained (day 23), and tested for conditioned fear to context and tone (day 25). Training consisted of two tone (20s) and footshock (500 ms, 0.25 mA) pairings. In Experiment 1, muscimol (4.4 nmol/0.5 microl/side), a GABAergic agonist, was microinfused to temporarily inactivate the BLA during training. Rats given chronic corticosterone showed enhanced freezing to context, but not tone, compared to vehicle-supplemented rats. Moreover, BLA inactivation impaired contextual and tone conditioning, regardless of corticosterone treatment. In Experiment 2, RU486 (0, 0.3, and 3.0 ng/0.2 microl/side) was infused on training day to antagonize glucocorticoid receptors in the BLA. Corticosterone treatment enhanced fear conditioning to context and tone when analyzed together, but not separately. Moreover, RU486 (3.0 ng/side) selectively exacerbated freezing to context in chronic corticosterone-exposed rats only, but failed to alter tone conditioning. Serum corticosterone levels were negatively correlated with contextual, not tone, conditioning. Altogether, these suggest that chronic corticosterone influences fear conditioning differently than chronic stress as shown previously. Moreover, chronic exposure to corticosteroids alters BLA functioning in a non-linear fashion and that contextual conditioning is influenced more than tone conditioning by chronic corticosterone and BLA glucocorticoid receptor stimulation.  相似文献   

14.
Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague–Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.  相似文献   

15.
Our objective was to characterize individual differences in fear conditioning and extinction in an outbred rat strain, to test behavioral predictors of these individual differences, and to assess their heritability. We fear-conditioned 100 Long-Evans rats, attempted to extinguish fear the next day, and tested extinction recall on the third day. The distribution of freezing scores after fear conditioning was skewed, with most rats showing substantial freezing; after fear extinction, the distribution was bimodal with most rats showing minimal freezing, but a substantial portion showing maximal freezing. Longer rearing episodes measured prior to conditioning predicted less freezing at the beginning of extinction, but differences in extinction learning were not predicted by any baseline exploratory behaviors. We tested the heritability of extinction differences by breeding rats from the top and bottom 20 % of freezing scores during extinction recall. We then ran the offspring through the same conditioning/extinction procedure, with the addition of recording ultrasonic vocalizations throughout training and testing. Only a minority of rats emitted distress vocalizations during fear acquisition, but the incidence was less frequent in the offspring of good extinguishers than in poor extinguishers or randomly bred controls. The occurrence of distress vocalizations during acquisition predicted higher levels of freezing during fear recall regardless of breeding line, but the relationship between vocalization and freezing was no longer evident following extinction training, at which point freezing levels were influenced only by breeding and not by vocalization. The heritability (h 2) of extinction recall was estimated at 0.36, consistent with human estimates.  相似文献   

16.
Vervliet B 《Acta psychologica》2008,127(3):601-613
This review addresses the effects of the cognitive enhancer D-cycloserine (DCS) on the memory processes that occur in conditioned fear extinction, which is the experimental model for exposure techniques to reduce clinical anxiety. All reported rat studies show an enhanced fear extinction effect when DCS is administered acutely before or shortly after extinction training. DCS also promotes the generalization of this fear extinction effect. In addition, DCS reduces some forms of relapse (reduced reinstatement, reduced spontaneous recovery), but not others (contextual renewal, rapid reacquisition). It is argued that this pattern of results is best explained by assuming that DCS promotes extinction learning to the background context, resulting in enhanced contextual inhibition. Four human studies have produced mixed results, but some methodological issues complicate the reported failures. It is concluded that DCS is a promising tool as an adjunct to extinction techniques in exposure treatment, but that more pre-clinical and clinical research is needed to fully characterize its behavioral consequences.  相似文献   

17.
Polyamines, such as spermidine and spermine, have been reported to improve memory retention through the activation of N-methyl-d-aspartate receptors (NMDAr). However whether polyamine agonists and antagonists alter extinction remains unclear. In the current study, we investigated whether spermidine and polyamine antagonists that selectively block the NR2B subunit at the NMDAr alter the extinction of contextual conditioned fear in male Wistar rats. The bilateral intra-hippocampal administration of exogenous spermidine (2 nmol/site) immediately after, but not 6 h after extinction training, facilitated the extinction of fear conditioning. The injection of the NMDAr antagonists arcaine (0.2 nmol/site), ifenprodil (20 nmol/site) and traxoprodil (0.2 nmol/site), disrupted fear extinction and, at doses that had no effect per se, reversed the facilitatory effect of spermidine on fear extinction. These results suggest that exogenous and endogenous polyamines facilitate the extinction of contextual conditioned fear through activation of NR2B subunit-containing NMDAr in the hippocampus. Since extinction-based exposure therapy is widely used as treatment for a number of anxiety-related disorders, including phobias and post-traumatic stress, the currently reported facilitation of extinction by polyaminergic agents suggest these compounds as putative candidates for drug development.  相似文献   

18.
Anxiety disorders are commonly treated with exposure-based therapies that rely on extinction of conditioned fear. Persistent fear and anxiety following exposure therapy could reflect a deficit in the recall of extinction learning. Animal models of fear learning have elucidated a neural circuit for extinction learning and recall that includes the amygdala, ventromedial prefrontal cortex (vmPFC), and hippocampus. Whereas the amygdala is important for extinction learning, the vmPFC is a site of neural plasticity that allows for the inhibition of fear during extinction recall. We suggest that the vmPFC receives convergent information from other brain regions, such as contextual information from the hippocampus, to determine the circumstances under which extinction or fear will be recalled. Imaging studies of human fear conditioning and extinction lend credence to this extinction network. Understanding the neural circuitry underlying extinction recall will lead to more effective therapies for disorders of fear and anxiety.  相似文献   

19.
双酚A (bisphenol, BPA)是一种广泛应用于塑料制品的环境内分泌干扰物, 具有弱雌激素和抗雄激素活性, 与雌激素受体有一定的亲和力。本实验探讨长期BPA暴露对成年小鼠恐惧记忆的影响及其神经机制。将9周龄雄性小鼠暴露于BPA (0.4、4、40 mg/kg/d) 90 d, 建立小鼠亚慢性BPA暴露模型后, 进行场景性条件恐惧训练, 然后分别在电击后1 hr及24 hr检测小鼠的僵立时间, 同时在电击前、电击后1 hr及24 hr检测海马相关蛋白表达变化。结果表明, BPA (4、40 mg/kg/d)暴露延长小鼠场景性条件恐惧训练后1 hr及24 hr的僵立时间。Western blot蛋白检测结果显示, 行为训练前, BPA降低了小鼠NMDA受体NR1亚基表达水平, 上调组蛋白去乙酰化酶2表达。行为训练后1 hr及24 hr, BPA促进海马NMDA受体亚基NR1和组蛋白H3乙酰化表达, 抑制组蛋白去乙酰化酶2表达, 同时促进ERK1/2磷酸化水平。以上结果表明, 长期BPA暴露提高成年小鼠恐惧记忆获得的同时延长恐惧记忆的保持; 该作用可能通过激活海马的ERK1/2通路而改变核内组蛋白乙酰化和NMDA受体水平进行。  相似文献   

20.
Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and the phosphatase calcineurin as potential molecular substrates of extinction behavior. To test the involvement of these kinase and phosphatase activities in CB1-dependent extinction of conditioned fear behavior, conditioned CB1-deficient mice (CB1(-/-)) and wild-type littermates (CB1(+/+)) were sacrificed 30 min after recall of fear memory, and activation of ERKs, AKT, and calcineurin was examined by Western blot analysis in different brain regions. As compared with CB1(+/+), the nonreinforced tone presentation 24 h after auditory-cued fear conditioning led to lower levels of phosphorylated ERKs and/or calcineurin in the basolateral amygdala complex, ventromedial prefrontal cortex, dorsal hippocampus, and ventral hippocampus of CB1(-/-). In contrast, higher levels of phosphorylated p44 ERK and calcineurin were observed in the central nucleus of the amygdala of CB1(-/-). Phosphorylation of AKT was more pronounced in the basolateral amygdala complex and the dorsal hippocampus of CB1(-/-). We propose that the endogenous cannabinoid system modulates extinction of aversive memories, at least in part via regulation of the activity of kinases and phosphatases in a brain structure-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号