首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Hermann grid illusion became a cause célèbre, when it was reported that small figural changes from straight to curved bars abolish the dark illusory spots. We demonstrate that this is not an all-or-none effect; rather, the visual system tolerates some tilt/curviness. We transformed straight and curved Hermann grids to rhombic Motokawa grids by gradually tilting the horizontal bars. Initially, we observed only dark illusory spots, then dark spots combined with phantom bands traversing the rhomb along the minor axis, and finally dark phantom bands only. This shows that two kinds of illusions can coexist in the same grid pattern.  相似文献   

2.
Previous research, in which static figures were used, showed that the ability to perceive illusory contours emerges around 7 months of age. However, recently, evidence has suggested that 2-3-month-old infants are able to perceive illusory contours when motion information is available (Johnson & Mason, 2002; Otsuka & Yamaguchi, 2003). The present study was aimed at investigating whether even newborns might perceive kinetic illusory contours when a motion easily detected by the immature newborn's visual system (i.e. stroboscopic motion) is used. In Experiment 1, using a preference looking technique, newborns' perception of kinetic illusory contours was explored using a Kanizsa figure in a static and in a kinetic display. The results showed that newborns manifest a preference for the illusory contours only in the kinetic, but not in the static, condition. In Experiment 2, using an habituation technique, newborns were habituated to a moving shape that was matched with the background in terms of random-texture-surface; thus the recovery of the shape was possible relying only on kinetic information. The results showed that infants manifested a novelty preference when presented with luminance-defined familiar and novel shapes. Altogether these findings provide evidence that motion enhances (Experiment 1) and sometimes is sufficient (Experiment 2) to induce newborns' perception of illusory contours.  相似文献   

3.
In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T blank ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T blank ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.  相似文献   

4.
R B Post 《Perception》1986,15(2):131-138
The possibility that nystagmus suppression contributes to illusory motion was investigated by measuring perceived motion of a stationary stimulus following the removal of an optokinetic stimulus. This was done because optokinetic nystagmus typically outlasts cessation of an optokinetic stimulus. Therefore, it would be expected that a stationary fixated stimulus should appear to move after removal of an optokinetic stimulus if illusory motion results from nystagmus suppression. Illusory motion was reported for a stationary fixation target following optokinetic stimulation. This motion was reported first in the same direction as the preceding induced motion, then in the opposite direction. The two directions of illusory motion following optokinetic stimulation are interpreted as resulting from the use of smooth ocular pursuit to suppress first one phase of optokinetic after nystagmus and then the reverse phase. Implications for the origins of induced motion are discussed.  相似文献   

5.
This study is concerned with two questions regarding the illusory motion of objects that occurs concomitantly with motion of the head. One is whether this illusory concomitant motion, unlike the perception of real motion, is paradoxical in the sense that, although the object appears to move, it does not appear to go anywhere. The second question is whether illusory concomitant motion can be explained by errors in convergence produced by a tendency for the convergence of the eyes to displace in the direction of the resting state of convergence. Both questions receive a negative answer. In Experiment 1, it is shown that the illusory motion perceptually can add to or subtract from apparent motion resulting from real motion. In Experiment 2, it is shown that, for a binocularly viewed object at a near distance, the error in convergence (fixation disparity) is far too small to be an explanation for the illusory object motion associated with a moving head. The results of both experiments support an interpretation of illusory concomitant motion in terms of errors in the apparent distance of the stimulus object and the veridical perception of its direction.  相似文献   

6.
Shipley TF  Kellman PJ 《Perception》2003,32(8):985-999
Most computational and neural-style models of contour completion (ie illusory and occluded contours) are based on interpolation: the filling in of an edge between two visible edges. The results of three experiments suggest an alternative conception, that units are formed as a result of extrapolation from visible edges. In three experiments, subjects reported illusory contours between standard illusory-contour inducing elements and forms that do not, by themselves, induce illusory contours. We suggest that these forms are not a special case of inducing elements but that they represent a different class--receiving elements. Receiving elements are forms that can receive an illusory contour but cannot generate one, and they can alter contour formation. In experiment 1, receiving elements increased the judged clarity of illusory contours. In experiment 2, illusory edges were seen to connect to corners, line ends, and even the edges of circles. Boundary formation in motion displays also appears to be based on extrapolation. In experiment 3, subjects reported that small moving dots altered the formation of spatiotemporally defined boundaries. Implications for higher-order operator and network models of boundary formation are discussed.  相似文献   

7.
Stationary objects in a stereogram can appear to move when viewed with lateral head movements. This illusory motion can be explained by the motion-distance invariance hypothesis, which states that illusory motion covaries with perceived depth in accordance with the geometric relationship between the position of the stereo stimuli and the head. We examined two predictions based on the hypothesis. In Experiment 1, illusory motion was studied while varying the magnitude of binocular disparity and the magnitude of lateral head movement, holding viewing distance constant. In Experiment 2, illusory motion was studied while varying binocular disparity and viewing distance, holding magnitude of head movement constant. Ancillary measures of perceived depth, perceived viewing distance, and perceived magnitude of lateral head movement were also obtained. The results from the two experiments show that the extent of illusory motion varies as a function of perceived depth, supporting the motion-distance invariance hypothesis. The results also show that the extent of illusory motion is close to that predicted from the geometry in crossed disparity conditions, whereas it is greater than the predicted motion in uncrossed disparity conditions. Furthermore, predictions based on perceptual variables were no more accurate than predictions based on geometry.  相似文献   

8.
We investigated 3-8-month-olds' (N=62) perception of illusory contours in a Kanizsa figure by using a preferential looking technique. Previous studies suggest that this ability develops around 8 months of age. However, we hypothesized that even 3-4-month-olds could perceive illusory contours in a moving figure. To check our hypothesis, we created an illusory contour figure in which the illusory square underwent lateral movement. By rotating the elements of this figure, we created non-illusory contour figures. We found that: (1) infants preferred moving illusory contours to non-illusory contours by 3-4 months of age, and (2) only 7-8-month-olds preferred static illusory contours. Our findings demonstrate that motion information promotes infants' perception of illusory contours. Our results parallel those reported in the study of partly occluded objects ().  相似文献   

9.
We describe a compelling motion illusion elicited by a huge billboard placed along a street, depicting a building that contains strong perspective cues. When observers move fast along the opposite sidewalk, they perceive the depicted building as rotating in their direction of travel. This is a special case of the 'following', or 'pointing out of the picture', illusion that elicits a strong illusory motion percept. Here we discuss the cause of the illusory motion and suggest that the brain relies on the depicted perspective cues to infer a 3-D shape and a concomitant motion that is incompatible with the physical pictorial surface.  相似文献   

10.
Takahashi K  Niimi R  Watanabe K 《Perception》2010,39(12):1678-1680
Visual patterns consisting of a red-and-blue region with a blurry edge yield illusory motion. Eye movements over a static pattern induced illusory motion of the edge in the direction opposite to the eye movement. The illusion also takes place for patterns in motion without eye movement. The illusion suggests the effect of colour combination on the spatial perception of a blurry edge.  相似文献   

11.
We investigated the effect of local texture motion on time-to-contact (TTC) estimation. In Experiment 1, observers estimated the TTC of a looming disk with a spiral texture pattern in a prediction-motion task. Rotation of the spiral texture in a direction causing illusory contraction resulted in a significant TTC overestimation, relative to a condition without texture rotation. This would be consistent with an intrusion of task-irrelevant local upon task-relevant global information. However, illusory expansion did not cause a relative TTC underestimation but rather also a tendency towards overestimation. In Experiment 2, a vertical cylinder moved on the frontoparallel plane. Observers judged its TTC with a finish line. The cylinder was textured with stripes oriented in parallel to its longitudinal axis. It was either not rotating, rotating such that the stripes moved towards the finish line (i.e., in the same direction as the contour), or rotating such that the stripes moved away from the finish line. Both types of texture motion caused TTC overestimation compared to the static condition. Experiment 3 showed that the different effects of task-relevant and task-irrelevant texture motion are not a mere procedural effect of the prediction-motion task. In conclusion, task-irrelevant local motion and global motion are neither averaged in a simple manner nor are they processed independently.  相似文献   

12.
The human brain has a tendency to drift into the realm of internally-generated thoughts that are unbound by space and time. The term mind-wandering (MW) is often used describe such thoughts when they are perceptually decoupled. Evidence suggests that exposure to forward and backward illusory motion skews the temporal orientation of MW thoughts to either the future or past respectively. However, little is known about the impact of this manipulation on other features of MW. Here, using a novel experimental paradigm, we first confirmed that our illusory motion method facilitated the generation of MW thoughts congruent with the direction of motion. We then conducted content analyses which revealed that goal orientation and temporal distance were also significantly affected by the direction of illusory motion. We conclude that illusory motion may be an effective means of assaying MW and could help to elucidate this ubiquitous, and likely critical, component of cognition.  相似文献   

13.
Wesought to clarify the causes of the tactual horizontal-vertical illusion, where vertical lines are overestimated as compared with horizontals in Land inverted-T figures. Experiment 1 did not use L or inverted-T figures, but examined continuous or bisected horizontal and vertical lines. It was expected that bisected lines would be perceived as shorter than continuous lines, as in the inverted-T figure in the horizontal-vertical illusion. Experiment 1 showed that the illusion could not be explained solely by bisection, since illusory effects were similar for continuous and bisected vertical and horizontal lines. Experiments 2 and 3 showed that the illusory effects were dependent upon stimulus size and scanning strategy. Overestimation of the vertical was minimal or absent for the smallest patterns, where it was proposed that stimuli were explored by finger movement, with flexion at the wrist. Larger stimuli induce whole-arm motions, and illusory effects were found in conditions requiring radial arm motion. The illusion was weakened or eliminated in Experiment 4 when subjects were forced to examine stimuli with finger-and-hand motion alone, that is, their elbows were kept down on the table surface, and they were prevented from making radial arm motions. Whole-arm motion damaged performance and induced perceptual error. The experiments support the hypothesis that overestimation of the vertical in the tactual horizontal-vertical illusion derives from radial scanning by the entire arm.  相似文献   

14.
Motion lines (MLs) are a pictorial technique used to represent object movement in a still picture. This study explored how MLs contribute to motion perception. In Experiment 1, we reported the creation of a motion illusion caused by MLs: random displacements of objects with MLs on each frame were perceived as unidirectional global motion along the pictorial motion direction implied by MLs. In Experiment 2, we showed that the illusory global motion in the peripheral visual field captured the perceived motion direction of random displacement of objects without MLs in the central visual field, and confirmed that the results in Experiment 1 did not stem simply from response bias, but resulted from perceptual processing. In Experiment 3, we showed that the spatial arrangement of orientation information rather than ML length is important for the illusory global motion. Our results indicate that the ML effect is based on perceptual processing rather than response bias, and that comparison of neighboring orientation components may underlie the determination of pictorial motion direction with MLs.  相似文献   

15.
This study investigated multisensory interactions in the perception of auditory and visual motion. When auditory and visual apparent motion streams are presented concurrently in opposite directions, participants often fail to discriminate the direction of motion of the auditory stream, whereas perception of the visual stream is unaffected by the direction of auditory motion (Experiment 1). This asymmetry persists even when the perceived quality of apparent motion is equated for the 2 modalities (Experiment 2). Subsequently, it was found that this visual modulation of auditory motion is caused by an illusory reversal in the perceived direction of sounds (Experiment 3). This "dynamic capture" effect occurs over and above ventriloquism among static events (Experiments 4 and 5), and it generalizes to continuous motion displays (Experiment 6). These data are discussed in light of related multisensory phenomena and their support for a "modality appropriateness" interpretation of multisensory integration in motion perception.  相似文献   

16.
Naor-Raz G  Sekuler R 《Perception》2000,29(3):325-335
Fraser and Wilcox [1979 Nature (London) 281 565-566] devised a series of complex stationary patterns that provoked episodes of compelling illusory motion, but only in about two-thirds of people tested. Using simplified versions of their stimuli, we have confirmed their claim of perceptual dimorphism. We show that the strength of the illusory motion depends upon stimulus duration, eccentricity, and contrast. The illusory motion does not require fluctuations in accommodation, as has been suggested for some other forms of illusory motion. Finally, we consider the relation of Fraser-type motion to other forms of illusory motion.  相似文献   

17.
A novel kind of depth-spreading effect which should be distinguished in various aspects from the known interpolation, averaging, or 'filling-in' phenomena is reported. The demonstrations and experiments suggest that depth from an uncrossed disparity can be extrapolated from, not just interpolated between, illusory or real contours to form perceptually a background surface. In addition, the form of the illusory contour itself could be drastically changed in configuration and sharpness, contingently with perceptual background-surface formation. No such effects of surface and contour formation were observed in the crossed disparity case. Because the illusory contours were enhanced and perceived as illusory 'occluding contours', these effects may be closely related to the 'occlusion constraints' in the real world.  相似文献   

18.
Equations were developed to predict the apparent motion of a physically stationary object resulting from head movement as a function of errors in the perceived distances of the object or of its parts. These equations, which specify the apparent motion in terms of relative and common components, were applied to the results of two experiments. In the experiments, the perceived slant of an object was varied with respect to its physical slant by means of perspective cues. In Experiment I, O reported the apparent motion and apparent distance of each end of the object independently. The results are consistent with the equations in terms of apparent relative motion, but not in terms of apparent common motion. The latter results are attributed to the tendency for apparent relative motion to dominate apparent common motion when both are present simultaneously. In Experiment II, a direct report of apparent relative motion (in this case, apparent rotation) was obtained for illusory slants of a physically frontoparallel object. It was found that apparent rotations in the predicted direction occurred as a result of head motion, even though under these conditions no rotary motion was present on the retina.  相似文献   

19.
When a moving target vanishes abruptly, participants judge its final position as being ahead of its actual final position, in the direction of motion (representational momentum; Freyd & Finke, 1984). In the present study, we presented illusory motion and examined whether or not forward displacement was affected by the perceived direction and speed of the target. Experiments 1A and 1B showed that an illusory direction of movement of a target was perceived, and Experiment 2 showed that an illusory speed of a moving target was observed. However, neither the direction nor the magnitude of forward displacement was affected by these illusions. Therefore, it was suggested that the mechanism underlying forward displacement (or some extrapolation processing) uses different motion signals than does the perceptual mechanism.  相似文献   

20.
Stationary spirals viewed after inspecting rotating sectored disks appear to rotate and to expand or contract radially, even though the rotating disks contain no perceptible components of radial motion. Moreover, the relative directions of illusory rotation and radial motion observed in these instances are 'impossible' under the stimulus constraints normally imposed by the geometry of a spiral under rotation: the stationary spirals appeared to expand/contract in directions opposite to those normally observed under conditions of actual spiral rotation, and under conditions of illusory spiral rotation in classical spiral aftereffects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号