首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three experiments were performed on reach and grasp in 9- to 10-year-old children (8 controls and 8 with developmental coordination disorder [DCD]). In normal reaching, children in the DCD group were less responsive to the accuracy demands of the task in controlling the transport component of prehension and spent less time in the deceleration phase of hand transport. When vision was removed as movement began, children in the control group spent more time decelerating and reached peak aperture earlier. Children in the DCD group did not do that, although, like the control group, they did increase grip aperture in the dark. When depth cues were reduced and only the target or only the target and hand were visible, children in the control group used target information to maintain the same grip aperture in all conditions, but DCD children behaved as if the target was not visible. Throughout the studies, the control group of 9- to 10-year-olds did not produce adult-like adaptations to reduced vision, suggesting that they had not yet attained adult-like integration of sensory input. Compared with control children, children with DCD did not exhibit increased dependence on vision but showed less recognition of accuracy demands, less adaptation to the removal of vision, and less use of minimal visual information when it was available.  相似文献   

2.
Three experiments were performed on reach and grasp in 9- to 10-year-old children (8 controls and 8 with developmental coordination disorder [DCD]). In normal reaching, children in the DCD group were less responsive to the accuracy demands of the task in controlling the transport component of prehension and spent less time in the deceleration phase of hand transport. When vision was removed as movement began, children in the control group spent more time decelerating and reached peak aperture earlier. Children in the DCD group did not do that, although, like the control group, they did increase grip aperture in the dark. When depth cues were reduced and only the target or only the target and hand were visible, children in the control group used target information to maintain the same grip aperture in all conditions, but DCD children behaved as if the target was not visible. Throughout the studies, the control group of 9- to 10-year-olds did not produce adult-like adaptations to reduced vision, suggesting that they had not yet attained adult-like integration of sensory input. Compared with control children, children with DCD did not exhibit increased dependence on vision but showed less recognition of accuracy demands, less adaptation to the removal of vision, and less use of minimal visual information when it was available.  相似文献   

3.
An active kinesthetic-to-visual matching task was performed by 15 children aged 5-10 years and five young adults. The task required the participants to locate the target visually while performing center-out drawing movements to the located visual targets in the absence of visual feedback of hand/pen motion. Movement time (MT), terminal end-point position error (EPE), and initial directional error (IDE) were measured. The general finding is that the end-point error variability, representing the joint localization probability distributions for proprioceptive localization of the hand and visual localization of the target, was largest for the youngest children, but did not differ from one another for the older age groups. The localization distributions, as characterized by principal component analysis, showed that both errors in extent and direction were significantly larger in the youngest children. These error distributions could not be accounted for by initial localization errors prior to movement onset in the children. It is likely that at least some portion of the increased movement variability seen during sensorimotor development in young children can be attributed not only to immature control mechanisms per se, but also to partial, not yet stable, forward representations for hand localization which are used for movement perception, planning, and control.  相似文献   

4.
We investigated whether the nature of the perceptual information encoded for the memorization of successive hand positions varied according to subjects' perceptuomotor expertise. The experimental task used perceptual conflicts, induced by prisms, between visual and proprioceptive afferences during the encoding of various static hand positions. Control subjects were compared with skilled fencers, whose expertise was derived from the optimization. required and developed with practice, of the perceptuomotor processes involved in movement control. The analysis of spatial errors observed in a remembered target location test indicated that control subjects were dependent on the use of static visual information for the encoding of hand positions, whereas skilled fencers were not. Results are discussed in the light of the role of expertise in sensory integration and perceptual dominance.  相似文献   

5.
The present study attempted to determine if during short-duration movements visual feedback can be processed in order to make adjustments to changes in the environment. The effect that varying the importance of monitoring target position has on the relative importance of vision of hand and vision of target (Carlton 1981a; Whiting and Cockerill 1974) was also examined. Subjects performed short- (150 ms) and longer-duration (330 ms) aimed hand movements under four visual feedback conditions (lights-on/lights-off by target-on/target-off) to stationary and moving targets. For the lights-off and target-off conditions, the lights and target, respectively, were extinguished 50 ms after movement initiation. For all moving-target conditions, the target started to move as the movement was initiated. Subjects were able to process visual information in 165 ms, as movement endpoints were biased in the direction of target motion for movements of this duration. Removing visual feedback 50 ms after movement initiation did not alter this finding. Subjects performed equally well with target and lights on or off, independent of whether the target remained stationary or moved. Presumably, during the first 50 ms of the movement subjects received sufficient visual information to aid in movement control.  相似文献   

6.
The focus of the present study was on the intersegmental relationships that emerge when both task and oganismic constraints are imposed upon the coordination system. Seven right-handed subjects were required to reach and grasp a cup (hand transport phase) and place it on a designated target (cup transport phase), using either their preferred or nonpreferred hand. The kinematics of the movement were examined as a function of task (grasping a full cup versus grasping an empty one) and organismic (preferred or nonpreferred hand) constraints. During the hand transport phase, a task constraint effect was revealed through an increase in the low-velocity phase for the full cup condition. This constraint coexisted with a decrease in angular motion of the shoulder and elbow joints, indicating subjects reduced the number of variables to be independently controlled in the final homing-in stage of the movement. Accompanying this decrease in angular change was an increase in the displacement of the trunk. During the cup transport phase, the trunk was shown to contribute significantly more to the movement in the full cup condition and for the left hand movements, thereby increasing the stability of the movement system. These findings are in agreement with Bernstein's (1967) notion of fixating parts of the body as an initial solution to a movement problem, and they lend support to the concept of a proximodistal organization of coordination.  相似文献   

7.
J K Graham  M F Bradshaw  A Davis 《Perception》1998,27(11):1379-1387
In adults, the introduction of a pre-response delay has been shown to affect accuracy in pointing tasks while leaving accuracy in perceptual matching tasks unaffected. Here, we report on the effect of pre-movement delays on pointing accuracy in 6-10-year-old children. Children of this age group are of particular interest as their reliance on visual cues to monitor and correct their reaches appears to change during this period of development. Nineteen children were asked to point to the location of a target light after a delay of 0, 1, 2, or 4 s following target extinction. Performance was measured in two conditions: (i) open-loop, where the child reproduced the target locations in complete darkness, and (ii) with visual feedback, where information about hand position was available. Errors in the direction and in the amplitude of each reaching movement were recorded separately. The results show that temporal delay significantly affects the pointing movements of these children. Accuracy (mean) deteriorated after only 1 s whereas the precision (standard deviation) of the responses deteriorated after 4 s. Errors in amplitude, but not errors in direction, were reduced by the provision of visual feedback. Taken together, the findings suggest that amplitude and directional components of pointing in childhood utilise different sources of information, which differ in the extent to which temporal constraints operate.  相似文献   

8.
Children aged 1.5 to 8 years were required to touch accurately an illuminated target lamp located on a vertical board. Movements were made when visual information was complete (target lit for 3 s, room illuminated; partial (target lit for 3 s, room dark, and reduced (target lit for 0.7 s, room dark). Dependent variables were response accuracy, reaction time, and movement time. Accuracy decreased with decreasing availability of visual information and improved with age under all conditions. Reaction times were shorter in the dark (Conditions 2 and 3) than in the light; they decreased with age up to age 5 and did not continue to decrease thereafter. Movement time did not change with age under Conditions 1 and 3 but tended to increase with age under Condition 2. Slower movements were more accurate at all ages, provided visual feedback could be utilized. Increased reliance on the strategy "slower movements yield higher accuracy" was held to account for developmental changes under Condition 2, whereas in Conditions 1 and 3 improvement in the efficiency of motor preprogramming was implicated.  相似文献   

9.
In a number of studies, we have demonstrated that the spatial-temporal coupling of eye and hand movements is optimal for the pickup of visual information about the position of the hand and the target late in the hand's trajectory. Several experiments designed to examine temporal coupling have shown that the eyes arrive at the target area concurrently with the hand achieving peak acceleration. Between the time the hand reached peak velocity and the end of the movement, increased variability in the position of the shoulder and the elbow was accompanied by a decreased spatial variability in the hand. Presumably, this reduction in variability was due to the use of retinal and extra-retinal information about the relative positions of the eye, hand and target. However, the hand does not appear to be a slave to the eye. For example, we have been able to decouple eye movements and hand movements using Müller-Lyer configurations as targets. Predictable bias, found in primary and corrective saccadic eye movements, was not found for hand movements, if on-line visual information about the target was available during aiming. That is, the hand remained accurate even when the eye had a tendency to undershoot or overshoot the target position. However, biases of the hand were evident, at least in the initial portion of an aiming movement, when vision of the target was removed and vision of the hand remained. These findings accent the versatility of human motor control and have implications for current models of visual processing and limb control.  相似文献   

10.
In two studies, children between 5 and 10 years of age were asked to reach to grasp an object without sight of the hand during the movement. The oldest children and adults were faster when they could see the hand and increased maximum grip aperture when they could not see the hand. The 10-year-olds were less able to integrate grasp and lift than adults when they could see their hands. Children aged 5 and 6 showed no increase in movement time when they could not see the hand and did not adapt maximum grip aperture to lack of sight. These effects remained when children were encouraged to reach for and lift the target as quickly as possible. The results indicate that younger children did not give preference to vision in the control of prehension, while older children used visual feedback to improve efficiency. Dependence on sight of the hand for the control of prehension does not simply decrease with age, but it may be integrated into an anticipatory control strategy where it contributes to the efficiency of control.  相似文献   

11.
Preschoolers who explore objects haptically often fail to recognize those objects in subsequent visual tests. This suggests that children may represent qualitatively different information in vision and haptics and/or that children’s haptic perception may be poor. In this study, 72 children (2½-5 years of age) and 20 adults explored unfamiliar objects either haptically or visually and then chose a visual match from among three test objects, each matching the exemplar on one perceptual dimension. All age groups chose shape-based matches after visual exploration. Both 5-year-olds and adults also chose shape-based matches after haptic exploration, but younger children did not match consistently in this condition. Certain hand movements performed by children during haptic exploration reliably predicted shape-based matches but occurred at very low frequencies. Thus, younger children’s difficulties with haptic-to-visual information transfer appeared to stem from their failure to use their hands to obtain reliable haptic information about objects.  相似文献   

12.
The reaction times (RTs), movement times (MTs), and final accuracy of hand movements directed towards visual goals were measured in 6-, 8-, and 10-year-old children, using tasks in which direction and amplitude components of movement were distinctly required. The tasks were performed with and without visual feedback of the limb. RTs decreased with age, and were shorter in directional than in amplitude task, in all ages. MTs were the longest at age 8 in both tasks, equally short at ages 6 and 10 in the directional task, the shortest at age 10, and intermediate at age 6, when amplitude had to be regulated. In the amplitude task, the target distance generally affected MTs under both visual conditions, but to a lower degree at age 10 than in the two younger groups. Movement accuracy, which was in all cases higher with visual feedback, showed different developmental trends among the two spatial components: directional accuracy was not different among the three groups of age, whereas amplitude accuracy showed a nonmonotonic development in the nonvisual condition, with an increase between age 6 and age 10, and the lowest level at age 8. In the visual condition, amplitude accuracy did not change with age. The specification of direction seems therefore to predominantly load the preparatory stage of the response. Amplitude specification seems to be more dependent on on-going regulations and to undergo a longer and more complex development, with a critical period around age 8 when a greater propensity for a feedback-based control appears on the two components. With increasing age, amplitude tends to be specific to a greater extent by a feedforward process.  相似文献   

13.
Two experiments were performed to evaluate the influence of movement frequency and predictability on visual tracking of the actively and the passively moved hand. Four measures of tracking precision were employed: (a) saccades/cycle, (b) percent of pursuit movement, (c) eye amplitude/arm amplitude, (d) asynchrony of eye and hand at reversal. Active and passive limb movements were tracked with nearly identical accuracy and were always vastly superior to tracking an external visual target undergoing comparable motion. Proprioceptive information about target position appears to provide velocity and position information about target location. Its presence permits the development of central eye-movement programmes that move the eyes in patterns that approximate but do not exactly match, temporally or spatially, the motion of the hand.  相似文献   

14.
Thirty children and 5 adults participated in two experiments designed to compare visual processing in normal and reading disabled children. The children were aged 8, 10, and 12 years. In Experiment 1, subjects were asked to detect the temporal order of two briefly presented stimuli. In Experiment 2, subjects sorted cards containing bracket stimuli that did or did not produce perceptual grouping effects. Poor readers required more time to make accurate temporal order judgments and showed stronger perceptual grouping effects. For both good and poor readers, the amount of time necessary to make a correct temporal order judgment decreased, and perceptual grouping effects became weaker with age. However, the magnitude of the difference between the groups did not lessen with age. These results suggest that there are visual processing differences between good and poor readers that do not appear to correct by age 12.  相似文献   

15.
When searching for a target with eye movements, saccades are planned and initiated while the visual information is still being processed. If hand movements are needed to perform a search task, can they too be planned while visual information from the current position is still being processed? To find out we studied a visual search task in which participants had to move their hand to shift a window through which they could see the items. The task was to find an O in a circle of Cs. The size of the window and the sizes of the gaps in the Cs were varied. Participants made fast, smooth arm movements between items and adjusted their movements, when on the items, to the window size. On many trials the window passed the target and returned, indicating that the next movement had been planned before identifying the item that was in view.  相似文献   

16.
This study explored the use of advance information in the control of reach-to-grasp movements. The paradigm required participants to reach and grasp illuminated blocks with their right hand. Four target blocks were positioned on a table surface, two each side of the mid-saggital plane. In the complete precue condition, advance information precisely specified target location. In the partial precue condition, advance information indicated target location relative to the midsaggital plane (left or right). In the null condition, the advance information was entirely ambiguous. Participants produced fastest responses in the complete precue condition, intermediate response times in the partial condition, and the slowest responses in the null condition. This result was observed in adults and four groups of children including a group aged 4-6 years. In contrast, children with Developmental Coordination Disorder (DCD, n = 11, aged 7-13 years) showed no advantage of partial precueing. Movement duration was determined by target location but was unaffected by precue condition. Movement duration was a clear function of age apart from children in the DCD group who showed equivalent movement times to those of the youngest children. These findings provide important insights into the control of reach-to-grasp movements and highlight that partial cues are exploited by children as young as 4 years but are not used in situations of abnormal development.  相似文献   

17.
The performance of bimanual movements involving separate objects presents an obvious challenge to the visuo-motor system: Visual feedback can only be obtained from one target at a time. To overcome this challenge overt shifts in visual attention may occur so that visual feedback from both movements may be used directly (Bingham, Hughes, & Mon-Williams, 2008; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003). Alternatively, visual feedback from both movements may be obtained in the absence of eye movements, presumably by covert shifts in attention (Diedrichsen, Nambisan, Kennerley, & Ivry, 2004). Given that the quality of information falls with increasing distance from the fixated point, can we obtain the level of information required to accurately guide each hand for precision grasping of separate objects without moving our eyes to fixate each target separately? The purpose of the current study was to examine how the temporal coordination between the upper limbs is affected by the quality of visual information available during the performance of a bimanual task. A total of 11 participants performed congruent and incongruent movements towards near and/or far objects. Movements were performed in natural, fixate-centre, fixate-left, and fixate-right vision conditions. Analyses revealed that the transport phase of incongruent movements was similar across vision conditions for the temporal aspects of both the transport and grasp, whereas the spatial aspects of grasp formation were influenced by the quality of visual feedback. We suggest that bimanual coordination of the temporal aspects of reach-to-grasp movements are not influenced solely by overt shifts in visual attention but instead are influenced by a combination of factors in a task-constrained way.  相似文献   

18.
The constraints that guide bimanual movement coordination are informative about the processing principles underlying movement planning in humans. For example, symmetry relative to the body midline benefits finger and hand movements independent of hand posture. This symmetry constraint has been interpreted to indicate that movement coordination is guided by a perceptual code. Although it has been assumed implicitly that the perceptual system at the heart of this constraint is vision, this relationship has not been tested. Here, congenitally blind and sighted participants made symmetrical and non-symmetrical (that is, parallel) bimanual tapping and finger oscillation movements. For both groups, symmetrical movements were executed more correctly than parallel movements, independent of anatomical constraints like finger homology and hand posture. For the blind, the reliance on external spatial factors in movement coordination stands in stark contrast to their use of an anatomical reference frame in perceptual processing. Thus, the externally coded symmetry constraint evident in bimanual coordination can develop in the absence of the visual system, suggesting that the visual system is not critical for the establishment of an external-spatial reference frame in movement coordination.  相似文献   

19.
The study examined the contribution of various sources of visual information utilised in the control of discrete aiming movements. Subjects produced movements, 15.24 cm in amplitude, to a 1.27 cm target in a movement time of 330 ms. Responses were carried out at five vision-manipulation conditions which allowed the subject complete vision, no vision, vision of only the target or stylus, and a combination of stylus and target. Response accuracy scores indicated that a decrement in performance occurred when movements were completed in the absence of visual information or when only the target was visible during the response. The stylus and the target plus stylus visual conditions led to response accuracy which was comparable to movements produced with complete vision. These results suggest that the critical visual information for aiming accuracy is that of the stylus. These findings are consistent with a control model based on a visual representation of the discrepancy between the position of the hand and the location of the target.  相似文献   

20.
The purpose of this longitudinal infant study was to investigate the influence of visual information of the hand trajectory in the development of reaching movements in prehension. Ten infants were observed biweekly from the age of 10 weeks to 28 weeks and 1 yr. The reach kinematics were analyzed at age of reach onset, 6 mo and 1 yr of age. The results showed that infants reached for objects earlier when the visual feedback of the hand trajectory and the object were available. However, visual feedback of the hand trajectory did not change the movement speed and smoothness of the reach component at 6 mo and 1 yr of age. Infants reached for the larger object earlier and with higher velocity than for the smaller object. Visual feedback of the hand facilitates the age of reaching onset, but when the reaching movements become sufficiently stable, infants perform equally well with or without visual trajectory feedback of the hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号