首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The aim of the present study was to investigate the processes underlying aiming movements (motor programming and feedback control), and to explore their modification through learning. Two groups of 6- and 9-year-old children were asked to perform a directional aiming task without visual feedback (open-loop situation). After 15 trials (pretest) all subjects were submitted to a practice session which consisted of three series of trials with visual feedback (closed-loop situation). Half of the subjects had to perform the task at maximum speed (programmed movements), while the other half was required to perform slow movements (feedback-controlled movements). After the practice session all subjects were tested again in the openloop situation without time constraints (posttest). The results showed that during the practice session, accuracy was greater than in the two test conditions. It was greater in the case of slow movements than in the case of rapid ones. Moreover, in the case of rapid movements, it did not improve over the three practice series, while it did improve with slow movements. The difference between pre- and posttests showed that both groups improved their accuracy with practice in all conditions, the greatest improvement being obtained with rapid practice movements in 9-year-old children. It is suggested that different types of feedback (on-line and delayed feedback) contribute in varying degrees to the improvement of the aiming movements. However, the rapid movement condition, which requires a greater efficiency of programming, was found to be more effective for learning than the slow movement condition. The age-related differences found in learning suggest that feedback information can be fully integrated into motor programming only after 6 years of age.  相似文献   

2.
A substantial body of research has examined the speed-accuracy tradeoff captured by Fitts’ law, demonstrating increases in movement time that occur as aiming tasks are made more difficult by decreasing target width and/or increasing the distance between targets. Yet, serial aiming movements guided by internal spatial representations, rather than by visual views of targets have not been examined in this manner, and the value of confirmatory feedback via different sensory modalities within this paradigm is unknown. Here we examined goal-directed serial aiming movements (tapping back and forth between two targets), wherein targets were visually unavailable during the task. However, confirmatory feedback (auditory, haptic, visual, and bimodal combinations of each) was delivered upon each target acquisition, in a counterbalanced, within-subjects design. Each participant performed the aiming task with their pointer finger, represented within an immersive virtual environment as a 1 cm white sphere, while wearing a head-mounted display. Despite visual target occlusion, movement times increased in accordance with Fitts’ law. Though Fitts’ law captured performance for each of the sensory feedback conditions, the slopes differed. The effect of increasing difficulty on movement times was least influential in the haptic condition, suggesting more efficient processing of confirmatory haptic feedback during aiming movements guided by internal spatial representations.  相似文献   

3.
Movement times to the first target in a 2-target sequence are typically slower than in 1-target aiming tasks. The 1-target movement time advantage has been shown to emerge regardless of hand preference, the hand used, the amount of practice, and the availability of visual feedback. The authors tested central and peripheral explanations of the 1-target advantage, as postulated by the movement integration hypothesis, by asking participants to perform single-target movements, 2-target movements with 1 limb, and 2-target movements in which they switched limbs at the first target. Reaction time and movement time data showed a 1-target advantage that was similar for both 1- and 2-limb sequential aiming movements. This outcome demonstrates that the processes underlying the increase in movement time to the 1st target in 2-target sequences are not specific to the limb, suggesting that the 1-target advantage originates at a central rather than a peripheral level.  相似文献   

4.
Two experiments investigated the effect of hand position on the accuracy of short- and long-duration aiming movements in the presence and absence of visual feedback. In Experiment 1 (N = 16) short aiming movements were executed rapidly, which would require them to be predominantly programmed, whereas in Experiment 2(N = 8) these movements were performed slowly enough so that visual feedback, which implies that they were predominantly programmed. However, the long-duration, short-length movements of Experiment 2 were disrupted when visual feedback was removed, which suggests that these movements were being guided by visual feedback. Having the heel of the responding hand in contact with the target platform during the response resulted in greater accuracy than no hand contact for the short-length movements of both experiments. Taken together, these results indicated that hand contact produced greater aiming accuracy than no hand contact for both programmed- and feedback-based movements.  相似文献   

5.
Two experiments were conducted in which participants (N = 12, Experiment 1; N = 12, Experiment 2) performed rapid aiming movements with and without visual feedback under blocked, random, and alternating feedback schedules. Prior knowledge of whether vision would be available had a significant impact on the strategies that participants adopted. When they knew that vision would be available, less time was spent preparing movements before movement initiation. Participants also reached peak deceleration sooner but spent more time after peak deceleration adjusting limb trajectories. Consistent with those findings, analysis of spatial variability at different points in the trajectory indicated that variability increased up to peak deceleration but then decreased from peak deceleration to the end of the movement.  相似文献   

6.
This study was designed to determine if movement planning strategies incorporating the use of visual feedback during manual aiming are specific to individual movements. Advance information about target location and visual context was manipulated using precues. Participants exhibited a shorter reaction time and a longer movement time when they were certain of the target location and that vision would be available. The longer movement time was associated with greater time after peak velocity. Under conditions of uncertainty, participants prepared for the worst-case scenario. That is, they spent more time organizing their movements and produced trajectories that would be expected from greater open-loop control. Our results are consistent with hierarchical movement planning in which knowledge of the movement goal is an essential ingredient of visual feedback utilization.  相似文献   

7.
The accuracy of a long aiming movement was studied as a function of whether it was performed toward or away from the midline of the subject's body in the presence or absence of visual feedback. 30 right-handed, male university students (19-26 yr.) served as subjects. With movement distance and duration controlled, the mean percentage of error was 6.34% less for movements made toward the body's midline than for those performed away from the midline. The mean percentage of error was also 48% less in the presence of visual feedback than in its absence. However, contrary to our expectation, movements executed toward the body's midline were not appreciably less disrupted in the absence of visual feedback than movements performed away from the midline.  相似文献   

8.
The bimanual coupling literature supposes an inherent drive for synchrony between the upper limbs when making discrete bimanual movements. The level of synchrony is argued to be task dependent, reliant on the visual demands of the two targets, and the result of a complex pattern of hand and eye movements (Bingham, Hughes, & Mon-Williams, 2008 ; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003 ). However, recent work by Bruyn and Mason ( 2009 ) suggests that temporal coordination is not solely influenced by visual saccades. In this experimental series, a total of 8 participants performed congruent movements to targets either near or far from the midline. Targets far from the midline, requiring a visual saccade, resulted in greater terminal asynchrony. Initial and terminal asynchrony were not consistent, but linked to the task demands at that stage of the movement. If the asynchrony evident at the end of a bimanual movement is due to a complex pattern of hand and eye movements then the removal of visual feedback should result in an increase in synchrony. Sixteen participants then completed congruent and incongruent bimanual aiming movements to near and/or far targets. Movements were made with or without visual feedback of hands and targets. Analyses revealed that movements made without visual feedback showed increased synchrony between the limbs, yet movements to incongruent targets still showed greater asynchrony. We suggest that visual constraints are not the sole cause of asynchrony in discrete bimanual movements.  相似文献   

9.
Previous research has demonstrated that movement times to the first target in sequential aiming movements are influenced by the properties of subsequent segments. Based on this finding, it has been proposed that individual segments are not controlled independently. The purpose of the current study was to investigate the role of visual feedback in the interaction between movement segments. In contrast to past research in which participants were instructed to minimize movement time, participants were set a criterion movement time and the resulting errors and limb trajectory kinematics were examined under vision and no vision conditions. Similar to single target movements, the results indicated that vision was used within each movement segment to correct errors in the limb trajectory. In mediating the transition between segments, visual feedback from the first movement segment was used to adjust the parameters of the second segment. Hence, increases in variability that occurred from the first to the second target in the no vision condition were curtailed when visual feedback was available. These results are discussed along the lines of the movement constraint and movement integration hypotheses.  相似文献   

10.
Three experiments were conducted to examine the role of target information in manual aiming. The key manipulations in this experiment were the use of two target contexts (the two forms of the Müller-Lyer illusion) and the visual conditions under which subjects moved. In Experiment 1, we demonstrated that the inward- and outward-pointing arrows biased manual-aiming movements in a manner consistent with their well-known influence on perceptual judgements. The elimination of visual feedback during the aiming movement (Experiment 2), and visual information about the target-aiming layout prior to the movement (Experiment 3) increased the magnitude of the bias. Together, these results demonstrate the strong effect of target information on manual aiming, and specifically, on the movement-planning processes that precede movement.  相似文献   

11.
This study shows that the difference in appearance between two types of computer generated real time visual information namely, cursor and trace feedback, becomes visible in the execution of aimed stylus movements. Movement execution was scrutinized by division into four relevant subsequent constituents on the basis of key kinematic events. As expected, the final section of a movement took more time and showed a larger number of adjustments in the cursor condition. Instead, the influence of trace feedback on movement execution became discernible in earlier sections of movement execution. When a combination of feedback types was employed, trace feedback seemed to dominate the impact on execution. Discussion focuses on the contribution of the present study to understanding the impact of specific features inherent to types of real time visual feedback, and the relevance of the present study's result to future research.  相似文献   

12.
The purpose of this study was to determine how subjects learn to adjust the characteristics of their manual aiming movements in order to make optimal use of the visual information and reduce movement error. Subjects practised aiming (120 trials) with visual information available for either 400 msec or 600 msec. Following acquisition, they were transferred to conditions in which visual information was available for either more or less time. Over acquisition, subjects appeared to reduce target-aiming error by moving to the target area more quickly in order to make greater use of vision when in the vicinity of the target. With practice, there was also a reduction in the number of modifications in the movement. After transfer, both performance and kinematic data indicated that the time for which visual information was available was a more important predictor of aiming error than the similarity between training and transfer conditions. These findings are not consistent with a strong “specificity of learning” position. They also suggest that, if some sort of general representation or motor programme develops with practice, that representation includes rules or procedures for the utilization of visual feedback to allow for the on-line adjustment of the goal-directed movement.  相似文献   

13.
The present paper reports an experiment using the Fitts' tapping paradigm. It is concerned with a comparison of movement times and accuracy during blind and visual repetitive tapping. A blind condition was used to investigate rapid aiming movements under motor program control, whilst visual aiming was used to assess the role of visual feedback for control purposes. Subjects in the blind conditions were able to replicate the amplitude specifications of the task, whereas effective target width was constant for a set amplitude and did not reflect specified target width. Subjects, furthermore, responded more rapidly when tapping blind. These results are discussed in terms of the magnitude of forces being attempted as a result of performing a set amplitude, and the role of visual feedback.  相似文献   

14.
The present paper reports an experiment using the Fitts’ tapping paradigm. It is concerned with a comparison of movement times and accuracy during blind and visual repetitive tapping. A blind condition was used to investigate rapid aiming movements under motor program control, whilst visual aiming was used to assess the role of visual feedback for control purposes. Subjects in the blind conditions were able to replicate the amplitude specifications of the task, whereas effective target width was constant for a set amplitude and did not reflect specified target width. Subjects, furthermore, responded more rapidly when tapping blind. These results are discussed in terms of the magnitude of forces being attempted as a result of performing a set amplitude, and the role of visual feedback.  相似文献   

15.
Three experiments were conducted to determine how variables other than movement time influence the speed of visual feedback utilization in a target-pointing task. In Experiment 1, subjects moved a stylus to a target 20 cm away with movement times of approximately 225 msec. Visual feedback was manipulated by leaving the room lights on over the whole course of the movement or extinguishing the lights upon movement initiation, while prior knowledge about feedback availability was manipulated by blocking or randomizing feedback. Subjects exhibited less radial error in the lights-on/blocked condition than in the other three conditions. In Experiment 2, when subjects were forced to use vision by a laterally displacing prism, it was found that they benefited from the presence of visual feedback regardless of feedback uncertainty even when moving very rapidly (e.g. less than 190 msec). In Experiment 3, subjects pointed with and without a prism over a wide variety of movement times. Subjects benefited from vision much earlier in the prism condition. Subjects seem able to use vision rapidly to modify aiming movements but may do so only when the visual information is predictably available and/or yields an error large enough to detect early enough to correct.  相似文献   

16.
In aiming movements the limb position drifts away from the defined target after some trials without visual feedback, a phenomenon defined as proprioceptive drift (PD). There are no studies investigating the association between the posterior parietal cortex (PPC) and PD in aiming movements. Therefore, cathodal and sham transcranial direct current stimulation (tDCS) were applied to the left PPC concomitantly with the performance of movements with or without vision. Cathodal tDCS applied without vision produced a higher level of PD and higher rates of drift accumulation while it decreased peak velocity and maintained the number of error corrections, not affecting movement amplitude. The proprioceptive information seems to produce an effective reference to movement, but with PPC stimulation it causes a negative impact on position.  相似文献   

17.
The purpose of this experiment was to investigate how the control of aiming movements performed as fast and as accurately as possible changes with practice. We examined: (1) the influence of visual feedback on the initial impulse and error correction phases of aiming movements during acquisition; and (2) the effect of removing visual feedback at different levels of practice. Results from the acquisition trials indicated that vision had a major impact on the organization of the initial impulse and error correction phases. Also, consistent with findings from research involving temporally constrained movements, the cost of removing vision was greater after extensive levels than after moderate levels of practice. Collectively, these results denote the importance of visual feedback to the learning of this particular class of aiming movements. Learning appears to be a dual process of improved programming of the initial impulse and increased efficiency of feedback processing. Practice not only acts on programming and feedback processes directly, but also indirectly through a reciprocal interplay between these two processes.  相似文献   

18.
Examinations of goal-directed movements reveal a process of control that operates to make adjustments on the basis of the expected visual afference associated with the limb's movement. This experiment examined the impact of perturbations to the perceived and actual velocity of aiming movements when each was presented alone or in tandem with the other. Perturbations to perceived velocity were achieved by translating the background over which aiming movements were performed. An aiming stylus that discharged air either in the direction of the movement or in the direction opposite the movement generated the actual velocity perturbations. Kinematic analyses of the aiming movements revealed that only the actual perturbation influenced the control of early movement trajectories. The results are discussed with respect to the influence that visual information has on the control exerted against physical perturbations. Speculations are raised regarding how potential for perturbations influences the strategies adopted for minimizing their impact.  相似文献   

19.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

20.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号