首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the strategic (presumably cortical) control of ocular fixation in experiments that measured the fixation offset effect (FOE) while manipulating readiness to make reflexive or voluntary eye movements. The visual grasp reflex, which generates reflexive saccades to peripheral visual signals, reflects an opponent process in the superior colliculus (SC) between fixation cells at the rostral pole, whose activity helps maintain ocular position and increases when a stimulus is present at fixation, and movement cells, which generate saccades and are inhibited by rostral fixation neurons. Voluntary eye movements are controlled by movement and fixation cells in the frontal eye field (FEF). The FOE--a decrease in saccade latency when the fixation stimulus is extinguished--has been shown to reflect activity in the collicular eye movement circuitry and also to have an activity correlate in the FEF. Our manipulation of preparatory set to make reflexive or voluntary eye movements showed that when reflexive saccades were frequent and voluntary saccades were infrequent, the FOE was attenuated only for reflexive saccades. When voluntary saccades were frequent and reflexive saccades were infrequent, the FOE was attenuated only for voluntary saccades. We conclude that cortical processes related to task strategy are able to decrease fixation neuron activity even in the presence of a fixation stimulus, resulting in a smaller FOE. The dissociation in the effects of a fixation stimulus on reflexive and voluntary saccade latencies under the same strategic set suggests that the FOEs for these two types of eye movements may reflect a change in cellular activity in different neural structures, perhaps in the SC for reflexive saccades and in the FEF for voluntary saccades.  相似文献   

2.
A race-like model is developed to account for various phenomena arising in simple reaction time (RT) tasks. Within the model, each stimulus is represented by a number of grains of information or activation processed in parallel. The stimulus is detected when a criterion number of activated grains reaches a decision center. Using the concept of statistical facilitation, the model accounts for many classical effects on mean simple RT, including those of stimulus area, stimulus intensity, stimulus duration, criterion manipulations, redundant stimuli, and the dissociation between intensity effects on simple RTs and temporal order judgments. The model is also consistent with distributional properties of simple RTs.  相似文献   

3.
Dissociations between a motor response and the subject's verbal report have been reported from various experiments that investigated special experimental effects (e.g., metacontrast or induced motion). To examine whether similar dissociations can also be observed under standard experimental conditions, we compared reaction times (RT) and temporal order judgments (TOJ) to visual and auditory stimuli of three intensity levels. Data were collected from six subjects, each of which served for nine sessions. The results showed a strong, highly significant modality dissociation: While RTs to auditory stimuli were shorter than RTs to visual stimuli, the TOJ data indicated longer processing times for auditory than for visual stimuli. This pattern was found over the whole range of intensities investigated. Light intensity had similar effects on RT and TOJ, while there was a marginally significant tendency of tone intensity to affect RT more strongly than TOJ. It is concluded that modality dissociation is an example of "direct parameter specification", where the pathway from stimulus to response in the simple RT experiment is (at least partially) separate from the pathway that leads to a conscious, reportable representation. Two variants of this notion and alternatives to it are discussed.  相似文献   

4.
Vision is suppressed during blinks and saccadic eye movements. We hypothesized that visual reaction times (RTs) in a vigilance test would be significantly increased when a blink or a saccade happened to coincide with the stimulus onset. Thirty healthy volunteers each performed a visual RT test for 15 min while their eye and eyelid movements were monitored by a system of infrared reflectance oculography. RTs increased significantly, many by more than 200 msec, when a blink occurred between 75 msec before and up to 150 msec after the stimulus onset. A similar result was observed with saccades that started 75 to 150 msec after the stimulus. Vision or attention was evidently inhibited before each blink and for longer than the saccades lasted. We suggest that visual suppression is involved in this process, which could explain some of the normal variability in RTs over periods of seconds that has not been adequately explained before.  相似文献   

5.
A diffusion model for simple reaction time (RT) and temporal order judgment (TOJ) tasks was developed to account for a commonly observed dissociation between these 2 tasks: Most stimulus manipulations (e.g., intensity) have larger effects in RT tasks than in TOJ tasks. The model assumes that a detection criterion determines the level of sensory evidence needed to conclude that a stimulus has been presented. Analysis of the performance that would be achieved with different possible criterion settings revealed that performance was optimal with a lower criterion setting for the TOJ task than for the RT task. In addition, the model predicts that effects of stimulus manipulations should increase with the size of the detection criterion. Thus, the model suggests that commonly observed dissociations between RT and TOJ tasks may simply be due to performance optimization in the face of conflicting task demands.  相似文献   

6.
The latency to initiate a saccade (saccadic reaction time) to an eccentric target is reduced by extinguishing the fixation stimulus prior to the target onset. Various accounts have attributed this latency reduction (referred to as the gap effect) to facilitated sensory processing, oculomotor readiness, or attentional processes. Two experiments were performed to explore the relative contributions of these factors to the gap effect. Experiment 1 demonstrates that the reduction in saccadic reaction time (RT) produced by fixation point offset is additive with the effect of target luminance. Experiment 2 indicates that the gap effect is specific for saccades directed toward a peripheral target and does not influence saccades directed away from the target (i.e., antisaccades) or choice-manual RT. The results are consistent with an interpretation of the gap effect in terms of facilitated premotor processing in the superior colliculus.  相似文献   

7.
A study was conducted to examine potential age-related differences in the strategic control of exogenous and endogenous saccades within the context of the fixation offset effect (FOE; i.e., faster saccades when a fixation point is removed than when it is left on throughout a trial). Subjects were instructed to make rapid saccades either on the basis of a suddenly appearing peripheral visual stimulus (exogenous saccade) or in response to a tone (endogenous saccade). On half of the trials the fixation point was removed simultaneously with the occurrence of the cue stimulus. Subjects' preparatory set was varied by manipulating the proportion of saccades generated to a visual and auditory stimulus within a trial block. Young and old adults both produced FOEs, and the FOEs were strategically modulated by preparatory set. The data are discussed in terms of aging and oculomotor control.  相似文献   

8.
Evidence is still inconclusive regarding the locus of the stimulus intensity effect on information processing in reaction tasks. Miller, Ulrich, and Rinkenauer (1999) addressed this question by assessing the intensity effect on stimulus- and response-locked lateralized readiness potentials (LRPs) as indices of the sensory and motor parts of reaction time (RT). In the case of visual stimuli, they observed that application of brighter stimuli resulted in a shortening of RT and stimulus-locked LRP (S-LRP), but not of response-locked LRP (R-LRP). The results for auditory stimuli, however, were unclear. In spite of a clear RT reduction due to increased loudness, neither S-LRP nor R-LRP onset was affected. A reason for this failure might have been a relatively small range of intensity variation and the type of task. To check for this possibility, we performed three experiments in which broader ranges of stimulus intensities and simple, rather than choice, response tasks were used. Although the intensity effect on the R-LRP was negligible, S-LRP followed RT changes, irrespective of stimulus modality. These findings support the conclusion that stimulus intensity exerts its effect before the start of motoric processes. Finally, S-LRP and R-LRP findings are discussed within a broader information-processing perspective to check the validity of the claim that S-LRP and R-LRP can, indeed, be considered as pure estimates of the duration of sensory and motor processes.  相似文献   

9.
A double response paradigm is utilized to study stimulus intensity effects upon the motor system in simple visual and auditory reaction times (RT). Subjects had to respond with both hands simultaneously upon detection of a stimulus. The RT difference of both hands is thereby of special interest, because it is considered that this variable does not contain any sensory latency and therefore allows one to study those processes that follow stimulus detection. It was found that the RT-difference distribution varies with stimulus intensity, which questions the general view that stimulus intensity affects only very early sensory stages in the processing chain. In particular, it was found that the variance of RT difference diminished with increasing stimulus intensity. This finding supports the notion of speeding up the motor process by increasing stimulus intensity. A generalization of a stochastic model by Meijers and Eijkman (1974) and Meijers, Teulings, and Eijkman (1976) is advanced to account for the findings. The central assumption is that more units (e.g., motoneurons) are activated if stimulus intensity is increased. The model’s qualitative predictions are confirmed.  相似文献   

10.
The present study reviews the literature on the empirical evidence for the dissociation between perception and action. We first review several key studies on brain-damaged patients, such as those suffering from blindsight and visual/tactile agnosia, and on experimental findings examining pointing movements in normal people in response to a nonconsciously perceived stimulus. We then describe three experiments we conducted using simple reaction time (RT) tasks with backward masking, in which the first (weak) and second (strong) electric stimuli were consecutively presented with a 40-ms interstimulus interval (ISI). First, we compared simple RTs for three stimulus conditions: weak alone, strong alone, and double, i.e., weak plus strong (Experiment 1); then, we manipulated the intensity of the first stimulus from the threshold (T) to 1.2T and 2T, with the second stimulus at 4T (Experiment 2); finally, we tested three different ISIs (20, 40, and 60 ms) with the stimulus intensities at 1.2T and 4T for the first and second stimuli (Experiment 3). These experiments showed that simple RTs were shorter for the double condition than for the strong-alone condition, indicating that motor processes under the double condition may be triggered by sensory inputs arising from the first stimulus. Our results also showed that the first stimulus was perceived without conscious awareness. These findings suggested that motor processes may be dissociated from conscious perceptual processes and that these two processes may not take place in a series but, rather, in parallel. We discussed the likely mechanisms underlying nonconscious perception and motor response to a nonconsciously perceived stimulus.  相似文献   

11.
In four experiments, increasing the intensities of both relevant and irrelevant auditory stimuli was found to increase response force (RF) in simple, go/no-go, and choice reaction time (RT) tasks. These results raise problems for models that localize the effects of auditory intensity on purely perceptual processes, indicating instead that intensity also affects motor output processes under many circumstances. In Experiment 1, simple RT, go/no-go, and choice RT tasks were compared, using the same stimuli for all tasks. Auditory stimulus intensity affected both RT and RF, and these effects were not modulated by task. In Experiments 2-4, an irrelevant auditory accessory stimulus accompanied a relevant visual stimulus, and the go/no-go and choice tasks were used. The intensity of the irrelevant auditory accessory stimulus was found to affect RT and RF, although the sizes of these effects depended somewhat on the temporal predictability of the accessory stimulus.  相似文献   

12.
If two stimuli need different times to be processed, this difference should in principle be reflected both by response times (RT) and by judgments of their temporal order (TOJ). However, several dissociations have been reported between RT and TOJ, e.g., RT is more affected than TOJ when stimulus intensity decreases. One account for these dissociations is to assume differences in the allocation of attention induced by the two tasks. To test this hypothesis, different distributions of attention were induced in the present study between two stimulus positions (above and below fixation). Only bright stimuli appeared in one position and either bright or dim stimuli in the other. In the two RT experiments, participants had to respond to every stimulus appearing in one of the two positions. Reaction times to bright stimuli were faster when they appeared in the position where dim stimuli were likely to occur. This finding suggests that the allocation of attention was adapted to the asymmetrical arrangement of stimuli, not suggested by explicit instruction. In the two TOJ experiments, the temporal order of stimuli appearing in the two positions had to be judged. Although bright stimuli appearing at the bright-and-dim location were judged to be earlier, this effect was small and insignificant. Further, the intensity dissociation between RT and TOJ was insensitive to random vs blockwise presentations of intensities, therefore was not modified by attentional preferences. Thus, asymmetrical arrangement of stimuli has an impact on the allocation of attention, but only in the RT task. Therefore dissociations between TOJ and response times cannot be accounted for by an attentional bias in the TOJ task but probably by different use of temporal information in the two tasks.  相似文献   

13.
Threatening stimuli are known to influence attentional and visual processes in order to prioritize selection. For example, previous research showed faster detection of threatening relative to nonthreatening stimuli. This has led to the proposal that threatening stimuli are prioritized automatically via a rapid subcortical route. However, in most studies, the threatening stimulus is always to some extent task relevant. Therefore, it is still unclear if threatening stimuli are automatically prioritized by the visual system. We used the additional singleton paradigm with task-irrelevant fear-conditioned distractors (CS+ and CS-) and indexed the time course of eye movement behavior. The results demonstrate automatic prioritization of threat. First, mean latency of saccades directed to the neutral target was increased in the presence of a threatening (CS+) relative to a nonthreatening distractor (CS-), indicating exogenous attentional capture and delayed disengagement of covert attention. Second, more error saccades were directed to the threatening than to the nonthreatening distractor, indicating a modulation of automatically driven saccades. Nevertheless, cumulative distributions of the saccade latencies showed no modulation of threat for the fastest goal-driven saccades, and threat did not affect the latency of the error saccades to the distractors. Together these results suggest that threatening stimuli are automatically prioritized in attentional and visual selection but not via faster processing. Rather, we suggest that prioritization results from an enhanced representation of the threatening stimulus in the oculomotor system, which drives attentional and visual selection. The current findings are interpreted in terms of a neurobiological model of saccade programming.  相似文献   

14.
It is widely assumed, based on Chocholle’s (1940) research, that stimuli that appear equal in loudness will generate the same reaction times. In Experiment 1, we first obtained equal-loudness functions for five stimulus frequencies at four different intensity levels. It was found that equal loudness produced equal RT at 80 phons and 60 phons, but not at 40 phons and 20 phons. It is likely that Chocholle obtained equivalence between loudness and RT at all intensity levels because of relay-click transients in his RT signals. One main conclusion drawn from Experiment 1 is that signal detection (in reaction time) and stimulus discrimination (in loudness estimation) require different perceptual processes. In the second phase of this investigation, the RT-intensity functions from six different experiments were used to generate scales of auditory intensity. Our analyses indicate that when the nonsensory or “residual” component is removed from auditory RT measures, the remaining sensory-detection component is inversely related to sound pressure according to a power function whose exponent is about — 3. The absolute value of this exponent is the same as the .3 exponent for loudness when interval-scaling procedures are used, and is one-half the size of the .6 exponent which is commonly assumed for loudness scaling.  相似文献   

15.
Using light onset as the stimulus in simple reaction time (SRT), the effect of stimulus intensity was studied in both between-subjects and within-subjects experimental designs. There was a strong intensity effect in both conditions but no significant interaction between the effect of stimulus intensity and the type of design. This differs from previous results with auditory stimuli where such an interaction has been demonstrated. When the criterion parameters of variable criterion theory were evaluated directly, the only significant effect was greater criterion variability in the between-subjects condition. Theoretical functions describing the growth of sensory strength for each intensity had different starting points and were largely parallel, showing only late temporal divergence. This provides an explanation of the rarity, in the SRT literature, of interactions between visual intensity and criterion variables. Correlations illustrating the relations between reaction time (RT) measures and theoretical criterion parameters are presented. Absence of the predicted relation between intensity and RT variability is evidence against theories relating RT to impulse rate treated as a Poisson process.  相似文献   

16.
Simple reaction time IRT) was measured as a function of stimulus intensity for a brief light pulse (1 msec) and a long one (300 msec). Target size, retinal position, and adapting luminance of the stimulus were varied parametrically, and the luminance value required to produce a RT of 50 msec greater than the asymptotic RT was calculated to obtain the critical duration or limit of time-intensity reciprocity. It was found that: the critical duration, even at the fovea, tends to increase with decreasing target size; the critical duration is shortest at the fovea and increases sharply with distance from the fovea; and as the adapting luminance increases, the critical duration decreases. These findings indicate that the RT technique is a sensitive measure for the stimulus conditions explored.  相似文献   

17.
To compare the timing of perceptual and motor decisions, distinct tasks have been designed, all of which have yielded systematic differences between these two moments. These observations have been taken as evidence of a sensorimotor dissociation. Inasmuch as the distinction between perceptual and motor decision moments is conceptually warranted, this conclusion remains debatable, since the observed differences may reflect the dissimilarity between the stimulations/tasks used to assess them. Here, we minimize such dissimilarities by comparing response time (RT) and anticipatory RT (ART), an alternative technique with which to infer the relative perceptual decision moments. Observers pressed a key either in synchrony with the third of a sequence of three stimuli appearing at a constant pace (ART) or in response to the onset of this third stimulus presented at a random interval after the second (RT). Hence, the two stimulation sequences were virtually identical. Both the mean and the variance of RT were affected by stimulus intensity about 1.5 times more than were the mean and the variance of ART. Within the framework of two simple integration-to-bound models, these findings are compatible with the hypothesis that perceptual and motor decisions operate on the same internal signal but are based on distinct criteria, with the perceptual criterion lower than the motor one.  相似文献   

18.
Piéron (1914, 1920, 1952) demonstrated that simple reaction time (SRT) decays as a hyperbolic function of luminance in detection tasks. However, whether such a relationship holds equally for choice reaction time (CRT) has been questioned (Luce, 1986; Nissen, 1977), at least when the task is not brightness discrimination. In two SRT and three CRT experiments, we investigated the function that relates reaction time (RT) to stimulus intensity for five levels of luminance covering the entire mesopic range. The psychophysical experiments consisted of simple detection, two-alternative forced choice (2 AFC) with spatial uncertainty, 2 AFC with semantic categorization, and 2 AFC with orientation discrimination. The results of the experiments showed that mean RT increases with task complexity. However, the exponents of the functions relating RT to stimulus intensity were found to be similar in the different experiments. This finding indicates that Piéron’s law holds for CRT as well as for SRT. It describes RT as a power function of stimulus intensity, with similar exponents, regardless of the complexity of the task.  相似文献   

19.
Three prevalent models predict different stimulus intensity effects on RT. These are: the serial-stage model (additivity), the variable criterion model (larger intensity effects with slower responding), and the temporal overlap model (smaller intensity effects with slower responding). The predictions were tested in a dual-response situation including oculomotor and manual responses (RT). Other variables were stimulus location probability (expectancy), foreperiod (alertness), and stimulus intensity (encoding. In Experiment I, an Intensity x Probability interaction was found such that the intensity-effect was smaller at low stimulus probability. Three further experiments were performed in order to specify some of the conditions relevant for this phenomenon. The results are consistent with the temporal-overlap interpretation. It was suggested that the obtained interaction results from a processing delay due to increased demands for cognitive and response processing (Stanovich & Pachella, 1977), or to the attention switch to an unexpected S-R event.  相似文献   

20.
The purpose of the study was to reconcile the contradictory evidence reporting either a shortening or lengthening of the simple reaction time (RT) as a function of the intensity of a warning signal. The lengthening of auditory RT is obtained when short visual or auditory warning signals are of constant intensity within a session and succeeded by a fore-period. Visual RT did not vary under similar circumstances. There was no effect when a warning signal of constant intensity overlapped in time with the response stimulus. The shortening of RT occurred with auditory warning signals of variable intensity and overlapping in time with the response stimulus. The shortening of RT was interpreted as facilitation-by-arousal. The lengthening of RT is a contextual effect but the data do not support accounts based on sensory-neural adaptation or criterion changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号