首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of ibotenate lesions of either the entorhinal cortex (EC) or the subiculum (SUB) on the ability of mice to memorize a single spatial location (initial discrimination), and on their capacity to switch to a new location (transfer) following the initial learning in an eight-arm radial maze. Results indicated that mice with ibotenate lesions of the EC or SUB were impaired in postoperative acquisition of the spatial discrimination task, making more reference, but not working memory, errors and displaying fewer first correct response trials than sham-operated control mice. Furthermore, additional damage to the ventral hippocampus exacerbated the impairment of performance induced by lesions of the SUB alone. In addition, all mice, except for the combined lesion group, exhibited similar performance levels when they were trained to choose another arm of the maze that had not previously been baited (transfer). These findings suggest that both the EC and the SUB play important roles in spatial information processing in mice.  相似文献   

2.
Chronic stress has detrimental effects on hippocampal integrity, while environmental enrichment (EE) has beneficial effects when initiated early in development. In this study, we investigated whether EE initiated in adulthood would mitigate chronic stress effects on cognitive function and hippocampal neuronal architecture, when EE started one week before chronic stress began, or two weeks after chronic stress onset. Adult male Sprague Dawley rats were chronically restrained (6h/d) or assigned as non-stressed controls and subdivided into EE or non-EE housing. After restraint ended, rats were tested on a radial arm water maze (RAWM) for 2-d to assess spatial learning and memory. The first study showed that when EE began prior to 3-weeks of chronic stress, EE attenuated chronic stress-induced impairments in acquisition, which corresponded with the prevention of chronic stress-induced reductions in CA3 apical dendritic length. A second study showed that when EE began 2-weeks after the onset of a 5-week stress regimen, EE blocked chronic stress-induced impairments in acquisition and retention at 1-h and 24-h delays. RAWM performance corresponded with CA3 apical dendritic complexity. Moreover, rats in EE housing (control or stress) exhibited similar corticosterone profiles across weeks, which differed from the muted corticosterone response to restraint by the chronically stressed pair-housed rats. These data support the interpretation that chronic stress and EE may act on similar mechanisms within the hippocampus, and that manipulation of these factors may yield new directions for optimizing brain integrity and resilience under chronic stress or stress related neuropsychological disorders in the adult.  相似文献   

3.
Male Sprague-Dawley rats, trained to perform a delayed-non-match-to-sample eight-arm radial maze task, were implanted with a single cannula aimed at the medial septal nucleus. A within-subjects design was utilized to examine the effects of intraseptal administration of bicuculline (0.5 micrograms) on performance of this task with 1- and 4-h delay intervals imposed between choices four and five. Administration of bicuculline immediately following the first four choices produced an impairment in maze performance at both a 1- and a 4-h delay interval. This treatment also produced an increase in latency per choice. Bicuculline-induced impairments were not observed when administered 2 h following the predelay session (2 h prior to testing). These data support previous observations that pharmacological manipulation of GABAergic activity within the septum modifies working memory processes.  相似文献   

4.
Lewis and Fischer-344 rats have been proposed as an addiction model because of their differences in addiction behaviour. It has been suggested that drug addiction is related to learning and memory processes and depends on individual genetic background. We have evaluated learning performance using the eight-arm radial maze (RAM) in Lewis and Fischer-344 adult rats undergoing a chronic treatment with cocaine. In order to study whether morphological alterations were involved in the possible changes in learning after chronic cocaine treatment, we counted the spine density in hippocampal CA1 neurons from animals after the RAM protocol. Our results showed that Fischer-344 rats significantly took more time to carry out test acquisition and made a greater number of errors than Lewis animals. Nevertheless, cocaine treatment did not induce changes in learning and memory processes in both strains of rats. These facts indicate that there are genetic differences in spatial learning and memory that are not modified by the chronic treatment with cocaine. Moreover, hippocampal spine density is cocaine-modulated in both strains of rats. In conclusion, cocaine induces similar changes in hippocampal neurons morphology that are not related to genetic differences in spatial learning in the RAM protocol used here.  相似文献   

5.
Sodium-dependent high-affinity choline uptake velocities in P2 fractions of the hippocampus and cortex of mice were analyzed at different times following both the first (Day 1) and last (Day 9) daily sessions of a spatial discrimination testing procedure in an eight-arm radial maze. Results showed that the immediate (30 s) post-training increase in mean hippocampal and cortical cholinergic activity observed on Day 1 did not significantly vary over days despite a marked and progressive improvement of discrimination performance. In contrast, the duration of these activations was considerably shortened in both structures between Days 1 (more than 1 hr) and 9 (about 15 min). The possible involvement of these changes in memory consolidation processes is discussed.  相似文献   

6.
Rats were trained on an eight-arm radial maze task using a procedure that provides for an assessment of both working and reference memory. Following training, rats received parietal cortex, medial prefrontal cortex, visual cortex, or nucleus basalis magnocellularis lesions. Rats with visual cortex lesions showed no change in performance on either working or reference memory. Rats with parietal cortex lesions displayed a temporary deficit in reference, but no deficit on working memory. Animals with medial prefrontal cortex lesions showed a temporary deficit on both working and reference memory. Rats with extensive lateral frontal and parietal cortex depletion of acetylcholinesterase following nucleus basalis magnocellularis lesions had a marked disruption only of reference but not of working memory. It is concluded that neocortex and possibly the cholinergic projections to neocortex play an important role in mediating reference memory.  相似文献   

7.
Aged rats with extensive prior training on the radial maze retain the capacity for accurate spatial working memory (WM) for at least 3 months without practice. To investigate the temporal limits of this influence of prior experience we compared the reacquisition of spatial WM by a group of experienced 21.5-month-old rats to the original acquisition by naive 3-month-old rats. The aged rats had received 225 radial maze tests between 3 and 11 months of age. Despite 10 months without practice the old rats rapidly reacquired critical performance. Their reacquisition was markedly superior to original learning by the young rats, even when delays as long as 5 h were imposed between the rats' fourth and fifth choices during the daily tests in the eight-arm maze. Additional tests showed that neither young nor old rats employed a response strategy to maintain accurate spatial WM performance. Experience clearly confers long-lived protection against the otherwise deleterious effects of aging on spatial WM, but the mechanism by which this influence arises is unknown.  相似文献   

8.
Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an autoassociative memory network and the CA1 area as a critical output structure. In order to understand the respective roles of the CA3- and CA1-hippocampal areas in the formation of contextual memory, we studied the effects of the reversible inactivation by lidocaine of the CA3 or CA1 areas of the dorsal hippocampus on acquisition, consolidation, and retrieval of a contextual fear conditioning. Whereas infusions of lidocaine never impaired elementary tone conditioning, their effects on contextual conditioning provided interesting clues about the role of these two hippocampal regions. They demonstrated first that the CA3 area is necessary for the rapid elaboration of a unified representation of the context. Secondly, they suggested that the CA1 area is rather involved in the consolidation process of contextual memory. Third, they showed that CA1 or CA3 inactivation during retention test has no effect on contextual fear retrieval when a recognition memory procedure is used. In conclusion, our findings point as evidence that CA1 and CA3 subregions of the dorsal hippocampus play important and different roles in the acquisition and consolidation of contextual fear memory, whereas they are not required for context recognition.  相似文献   

9.
The hippocampal CA3 subregion is critical for rapidly encoding new memories, which suggests that neuronal computations are implemented in its circuitry that cannot be performed elsewhere in the hippocampus or in the neocortex. Recording studies show that CA3 cells are bound to a large degree to a spatial coordinate system, while CA1 cells can become more independent of a map-based mechanism and allow for a larger degree of arbitrary associations, also in the temporal domain. The mapping of CA3 onto a spatial coordinate system intuitively points to its role in spatial navigation but does not directly suggest how such a mechanism may support memory processing. Although bound to spatial coordinates, the CA3 network can rapidly alter its firing rate in response to novel sensory inputs and is thus not as strictly tied to spatial mapping as grid cells in the medial entorhinal cortex. Such rate coding within an otherwise stable spatial map can immediately incorporate new sensory inputs into the two-dimensional matrix of CA3, where they can be integrated with already stored information about each place. CA3 cell ensembles may thus support the fast acquisition of detailed memories by providing a locally continuous, but globally orthogonal representation, which can rapidly provide a new neuronal index when information is encountered for the first time. This information can be interpreted in CA1 and other downstream cortical areas in the context of less spatially restricted information.  相似文献   

10.
Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease (AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse model of AD. We also assessed brain content of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). Performance was alike in wild-type and APP23 animals in the radial maze. In contrast, performance in the complex maze was better in wild-type than APP23 animals. Contrary to the wild-type, hippocampal BDNF levels decreased on training in APP23 animals. Hippocampal and frontal cortex NGF levels in APP23 animals correlated with the time to solve the complex maze, but correlated inversely with escape time in wild-type animals. NT-3 levels were alike in wild-type and APP23 animals and were unchanged even after training. Both types of mazes depend on hippocampal integrity to some extent. However, according to the cognitive mapping theory of spatial learning, the complex maze because of the increased complexity of the environment most likely depends more strongly on preserved hippocampal function than the radial maze in the working memory configuration applied here. Greater impairment in complex maze performance than in radial maze performance thus resembles the predominant affliction of the loss of hippocampal function in human AD. NGF and BDNF levels on maze learning are different in wild-type and transgenic animals, indicating that biological markers of AD may be altered on challenge even though equilibrium levels are alike.  相似文献   

11.
Sham-operated and nonoperated animals or animals with hippocampal lesions were presented with sets of trials to test both expectancy-based and data-based memory within the same task. During the study phase of each trial the animals were presented with a constant sequence of five arms on an eight-arm radial maze followed by a test phase in which a recognition test requiring a win-stay rule was used. Expectancy-based memory was measured during the study phase of the trials as a pattern of correct or incorrect orienting responses in anticipation of the ensuing doors in the constant sequence. Both groups of animals acquired correct orienting responses at the same rate, emitted the same pattern of correct orienting responses, and made the same number and pattern of intralist and extralist intrusion errors. Data-based memory was measured during the test phase of the trial as correct recognition test performance. During the test phase the animals with hippocampal lesions were impaired relative to controls on both immediate and 24-h recognition tests. These results suggest that the hippocampus might mediate only data-based, but not expectancy-based, memory and imply a possible dissociation between expectancy-based and data-based memory systems.  相似文献   

12.
The first purpose of this study was to investigate whether lesions in the temporal region may affect acquisition or retention of a discrimination task. In Experiment 1, rats with lesions of the temporal cortex (TC), the lateral entorhinal cortex (LEC), or their interconnections were tested postoperatively in simultaneous brightness discrimination. The results show that neither TC lesions nor LEC lesions affected acquisition of the task, and only LEC lesions impaired retention. TC/LEC transections impaired both acquisition and retention. The second purpose was to investigate effects of hippocampal lesions and perforant path transections on the discrimination task (Experiment 2). Both hippocampal and perforant path lesions impaired acquisition of the task, whereas retention was unaffected. It is suggested that TC and LEC are primarily involved in information storing and that hippocampal function is primarily involved in information processing.  相似文献   

13.
Using a radial maze task and different postoperative recovery periods, this experiment assessed and compared the reference and working memory performances of adult Long-Evans male rats subjected to entorhinal cortex, fimbria-fornix, and hippocampus lesions. Sham-operated rats were used as controls. In order to see whether the duration of the postsurgical recovery period would influence acquisition of the complex radial maze task, training began 1 month following surgery (Delay 1) for half the rats in each group, while for the other half training was started 6.5 months following surgery (Delay 2). The results indicated that at both recovery periods the entorhinal cortex lesions failed to affect either working or reference memory in the spatial task. Conversely, both fimbria-fornix and hippocampus lesions impaired both reference and working memory. While the reference memory deficit was generally similar in both fimbria-fornix and hippocampal lesion groups, analysis of the results for working memory indicated that at the longer delay rats with fimbria-fornix lesions were still impaired but in animals that had the hippocampus removed, working memory did not differ from that of controls. These results suggest that there was some recovery in those rats with hippocampal lesions (e.g., on the working memory task) but both hippocampal and fimbria-fornix animals were still impaired compared to controls when training was delayed 6.5 months following the operations.  相似文献   

14.
Recent studies demonstrate that context-specific memory retrieval after extinction requires the hippocampus. However, the contribution of hippocampal subfields to the context-dependent expression of extinction is not known. In the present experiments, we examined the roles of areas CA1 and CA3 of the dorsal hippocampus in the context specificity of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US), rats received extinction sessions in which the CS was presented without the US. In Experiment 1, pretraining neurotoxic lesions in either CA1 or CA3 eliminated the context dependence of extinguished fear. In Experiment 2, lesions of CA1 or CA3 were made after extinction training. In this case, only CA1 lesions impaired the context dependence of extinction. Collectively, these results reveal that both hippocampal areas CA1 and CA3 contribute to the acquisition of context-dependent extinction, but that only area CA1 is required for contextual memory retrieval.  相似文献   

15.
Exponential decay of spatial memory of rats in a radial maze   总被引:1,自引:0,他引:1  
The persistence of spatial memory of rats (n = 14) was investigated in an eight-arm radial maze. The animals were trained until the mean number of errors in the first eight choices was 0.2. The decay of performance with time was studied using delays of 5, 20, 60, 120, or 240 min between choices 4 and 5, during which the animal was removed from the apparatus. A delay of 60 min significantly impaired performance. The mean number of errors was not significantly different from the random choice level after a delay of 120 min. The increase in the number of errors with time was exponential. Comparison of the results with those of previous studies suggests that the nature of training may have effects on memory persistence in the radial maze.  相似文献   

16.
Rats were trained in an eight-arm radial maze and tested using a proactive interference (PI) procedure. Each test trial consisted of forced choices of four randomly selected arms followed, after a 2-h delay, by free choices among all eight arms. Normally, rats chose correctly during the free choices by entering and retrieving food from the four arms not yet visited during the test trial. Occasionally, an interference trial preceded the test trial by 1.5 or 3 h; interference trials consisted of forced choices of another four arms and an immediate test. The presence of an interference trial lowered test-trial performance (PI). Electroconvulsive shock (ECS) administered immediately after the interference trial had no effect; i.e., PI was still observed. When ECS was administered at the midpoint of the 3-h intertrial interval, performance increased to control (no ECS, no PI) levels. Such release from PI, however, was not obtained, and test-trial performance remained inaccurate when ECS was delivered immediately after the forced choices of the test trial (either 1.5 or 3 h after the interference trial).  相似文献   

17.
The impact of an acute circadian disruption on learning and memory in male and female rats was examined. Circadian disruption was elicited using a brief series of photoperiod shifts. Previous research using male rats showed that acute circadian disruption during acquisition of a spatial navigation task impaired long-term retention and that chronic circadian disruption impaired acquisition of the same task. However, the long-term effects of acute circadian disruption following circadian re-entrainment and whether sex differences in response to circadian disruption exist are still unknown. For the present study, rats were trained on the standard, spatial version of the Morris water task (MWT) and a visual discrimination task developed for the eight-arm radial maze. After reaching asymptotic performance, behavioural training was terminated and the experimental group experienced a series of photoperiod shifts followed by circadian re-entrainment. Following circadian re-entrainment, the subjects were given retention tests on the MWT and visual discrimination task. Following retention testing, an extra-dimensional shift using the eight-arm radial maze was also performed. An acute episode of circadian disruption elicited via photoperiod shifts negatively impacted retention of spatial memory in male and female rats. Retention of the visual discrimination task and the ability to detect extra-dimensional shifts were not impaired. The observed impairments on the MWT indicate that hippocampal representations are susceptible to a small number of photoperiod shifts even if the association is acquired prior to rhythm manipulation and retention is assessed following rhythm stabilization. Effects were limited to a hippocampus-dependent task, indicating that impairments are specific, not global.  相似文献   

18.
Hippocampal subfields CA(3) and CA(1) are hypothesized to differentially support the generation of associative predictions and the detection of associative mismatches, respectively. Using high-resolution functional MRI, we examined hippocampal subfield activation during associative retrieval and during subsequent comparisons of memory to matching or mismatching decision probes. Activity in the dentate gyrus/CA(2/3), CA(1), and other medial temporal lobe subregions tracked associative retrieval success, whereas activity in CA(1) and the perirhinal cortex tracked the presence of associative mismatches. These data support the hypothesis that CA(1) acts as a "comparator," detecting when memory for the past and sensory input in the present diverge.  相似文献   

19.
20.
The septo-hippocampal system in birds resembles that of mammals, motivating research into the function of the avian hippocampus while surprisingly little attention has been given to the septum. To investigate a possible role of the avian septum in memory, the effects of septal area lesions on a spatial working memory (SpWM) task was tested in homing pigeons. After preoperative training on an analogue eight-arm (feeders) radial maze, now sham-operated control and septal lesioned pigeons were then trained again on the same task of locating the four feeders on the test phase of a trial that were not baited during the sample phase of a trial. During the test phase of a working memory trial, septal lesioned pigeons, compared to both their own preoperative performance and the performance of the controls, required significantly more choices to locate the four baited feeders not baited during the sample phase of a trial, and they made significantly fewer correct responses to the now baited feeders on their first four choices. The results demonstrate that, like its mammalian counterpart, the avian septum plays an important role in SpWM, suggesting that at least some functional properties of the septum are evolutionarily conserved in birds and mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号