首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nakamura S  Shimojo S 《Perception》1999,28(7):893-902
The effects of a foreground stimulus on vection (illusory perception of self-motion induced by a moving background stimulus) were examined in two experiments. The experiments reveal that the presentation of a foreground pattern with a moving background stimulus may affect vection. The foreground stimulus facilitated vection strength when it remained stationary or moved slowly in the opposite direction to that of the background stimulus. On the other hand, there was a strong inhibition of vection when the foreground stimulus moved slowly with, or quickly against, the background. These results suggest that foreground stimuli, as well as background stimuli, play an important role in perceiving self-motion.  相似文献   

2.
Kim J  Palmisano S  Bonato F 《Perception》2012,41(4):402-414
Research has shown that adding simulated linear head oscillation to radial optic flow displays enhances the illusion of self-motion in depth (ie linear vection). We examined whether this oscillation advantage for vection was due to either the added motion parallax or retinal slip generated by insufficient compensatory eye movement during display oscillation. We constructed radial flow displays which simulated 1 Hz horizontal linear head oscillation (generates motion parallax) or angular head oscillation in yaw (generates no motion parallax). We found that adding simulated angular or linear head oscillation to radial flow increased the strength of linear vection in depth. Neither type of simulated head oscillation significantly reduced vection onset latencies relative to pure radial flow. Simultaneous eye-movement recordings showed that slow-phase ocular following responses (OFRs) were induced in both linear and angular viewpoint oscillation conditions. Vection strength was significantly reduced by active central fixation when viewing displays which simulated angular, but not linear, head oscillation. When these displays with angular oscillation were viewed without stable fixation, vection strength was found to increase with the velocity and regularity of the OFR. We conclude that vection improvements observed during central viewing of displays with angular viewpoint oscillation depend on the generation of eye movements.  相似文献   

3.
This study examined the effects of cues to motion in depth – namely, stereoscopic (i.e., changing-disparity cues and interocular velocity differences) and changing-size cues on forward and backward vection. We conducted four experiments in which participants viewed expanding or contracting optical flows with the addition of either or both cues. In Experiment 1, participants reported vection by pressing a button whenever they felt it. After each trial, they also rated the magnitude of the vection (from 0 to 100). In Experiments 2 and 3, the participants rated the perceived velocity and motion-in-depth impression of the flows relative to standard stimuli, respectively. In Experiment 4, the participants rated the perceived depth and distance of the display. We observed enhancements in vection, motion-in-depth impression, and perceived depth and distance when either or both types of cues indicated motion-in-depth, as compared to those when the cues did not (Experiments 1, 3, and 4). The perceived velocity changed with cue conditions only for the high velocity condition (Experiment 2). Correlational analyses showed that the vection can be best explained by the motion-in-depth impression. This was partially supported by the multiple regression analyses. These results indicate that the enhancement of vection caused by cues is related to the impression of motion-in-depth rather than the perceived velocity and perceived three-dimensionality.  相似文献   

4.
Seno T  Taya S  Ito H  Sunaga S 《Perception》2011,40(10):1241-1244
To explore how numbers are represented in depth in our mental space, we asked participants to sequentially speak random numbers while they observed forward/backward vection. We found that participants tended to generate larger numbers when they perceived backward self-motion. The results suggest that numerical magnitudes were topographically mapped onto our mental space from front to rear in an ascending order.  相似文献   

5.
Palmisano S 《Perception》2002,31(4):463-480
Previous research found that adding stereoscopic information to radially expanding optic flow decreased vection onsets and increased vection durations (Palmisano, 1996 Perception & Psychophysics 58 1168-1176). In the current experiments, stereoscopic cues were also found to increase perceptions of vection speed and self-displacement during vection in depth--but only when these cues were consistent with monocularly available information about self-motion. Stereoscopic information did not appear to be improving vection by increasing the perceived maximum extent of displays or by making displays appear more three-dimensional. Rather, it appeared that consistent patterns of stereoscopic optic flow provided extra, purely binocular information about vection speed, which resulted in faster/more compelling illusions of self-motion in depth.  相似文献   

6.
Subjects saw kinetic depth displays whose shape (sphere or cylinder) was defined by luminous dots distributed randomly on the surface or in the volume of the object. Subjects rated perceived 3-D depth, rigidity, and coherence. Despite individual differences, all 3 ratings increased with the number of dots. Dots in the volume yielded ratings equal to or greater than surface dots. Each rating varied with 3 of 4 factors (shape, distribution, numerosity, and perspective), but the ratings either between trials or between conditions were often uncorrelated. Object shape affected rigidity but not depth ratings. Veridically perceived polar displays had slightly lower rigidity but higher depth ratings than parallel projection displays. (Reversed polar displays were always grossly nonrigid.) The interaction of ratings and stimulus parameters requires theories and experiments in which different KDE ratings are not treated interchangeably.  相似文献   

7.
Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.  相似文献   

8.
We investigated whether the Simon effect occurs for the depth dimension in a 3-dimensional display. In Experiment 1, participants executed discriminative responses to 2 stimuli, a cross and a sphere, both 3-dimensional, which were perceived to be located near or far with respect to the participant's body. The response keys were located near and far along the participant's midline. Apparent stimulus spatial location (near or far) was irrelevant to the task. Results showed a depth Simon effect, attributable to the apparent stimulus spatial location. Experiment 2 replicated Experiment 1 with a different procedure. The 2 stimuli, a triangle and a rectangle, were 2-dimensional and were perceived as being located near or far from the participant's midline; the response keys were located near and far along the participant's midline. Results showed again the depth Simon effect. Experiment 3 was a control condition in which the 2 stimuli, drawings of a lamp and of a chair, had the same size, regardless of whether they appeared to be near or far. The depth Simon effect was replicated. A distribution analysis on data of Experiment 3 showed that the Simon effect increased as reaction times became longer. In Experiment 4, the position of the 2 stimuli, a circle and a cross, varied on the horizontal (right or left) dimension, whereas the position of the 2 responses varied along the depth (near or far) dimension. No Simon effect was found.  相似文献   

9.
During self-motions, different patterns of optic flow are presented to the left and right eyes. Previous research has, however, focused mainly on the self-motion information contained in a single pattern of optic flow. The present experiments investigated the role that binocular disparity plays in the visual perception of self-motion, showing that the addition of stereoscopic cues to optic flow significantly improves forward linear vection in central vision. Improvements were also achieved by adding changingsize cues to sparse (but not dense) flow patterns. These findings showed that assumptions in the heading literature that stereoscopic cues facilitate self-motion only when the optic flow has ambiguous depth ordering do not apply to vection. Rather, it was concluded that both stereoscopic and changingsize cues provide additional motion-in-depth information that is used in perceiving self-motion.  相似文献   

10.
Abstract: The effects of stimulus eccentricity (central or peripheral) on vection (visually induced self‐motion perception) were investigated using a stimulus combination consisting of a static foreground and a moving background, the depths of which were defined by binocular disparity. By using these stimulus settings, the effect of stimulus eccentricity can be assessed without any artifacts in the perceived depth of the stimulus, which would covary with the stimulus eccentricity. The results of this psychophysical experiment indicated that stimulus eccentricity cannot affect the strength of vection, and that both the central and peripheral stimuli can induce self‐motion perception with equal magnitudes if the stimulus sizes are equalized. The present investigation, which used a controlled stimulus depth condition, clearly negated the idea of the peripheral dominance of vection, which has been accepted for a long time.  相似文献   

11.
12.
We hypothesized that prior categorization of an attribute might sometimes facilitate the ordering of stimuli, particularly when the number of stimuli is relatively large or some of them need to be remembered. In four experiments, participants were required to rank order either numbers or line lengths either using a selection sort or following prior categorization. The results indicated that prior categorization produced faster sorting when the number of stimuli to be ordered was relatively large and when the stimuli were not continuously visible.  相似文献   

13.
I P Howard  T Heckmann 《Perception》1989,18(5):657-665
In studies where it is reported that illusory self-rotation (circular vection) is induced more by peripheral displays than by central displays, eccentricity may have been confounded with perceived relative distance and area. Experiments are reported in which the direction and magnitude of vection induced by a central display in the presence of a surround display were measured. The displays varied in relative distance and area and were presented in isolation, with one moving and one stationary display, or with both moving in opposite directions. A more distant display had more influence over vection than a near display. A central display induced vection if seen in isolation or through a 'window' in a stationary surrounding display. Motion of a more distant central display weakened vection induced by a nearer surrounding display moving the other way. When the two displays had the same area their effects almost cancelled. A moving central display nearer than a textured stationary surround produced vection in the same direction as the moving stimulus. This phenomenon is termed 'contrast-motion vecton' because it is probably due to illusory motion of the surround induced by motion of the centre. Unequivocal statements about the dominance of an eccentric display over a central display cannot be made without considering the relative distances and sizes of the displays and the motion contrast between them.  相似文献   

14.
College student subjects were asked to judge perceived depth in computer-generated displays. In all displays, one lattice of points moved through a stationary lattice in either a rowwise or columnwise direction. No points of the two lattices ever touched. Two display variables, strain and shear, each had a significant effect on depth ratings. Shear, however, was only effective at the level of strain for which depth ratings were high. The results confirm earlier studies in which “topological breakage” information was found to affect depth perception. The outcome of this study suggests that principles of perceptual organization can influence the nature of effective breakage information.  相似文献   

15.
Induced self-motion in central vision   总被引:2,自引:0,他引:2  
Previous research on visually induced self-motion found that stimulation of the central visual field (up to 30 degrees in diameter) results in perceived object motion while self-motion requires peripheral stimulation. In the present study, perceived self-motion was induced with a radially expanding pattern simulating observer motion through a space filled with dots, with visual angles of 7.5 degrees, 10.6 degrees, 15 degrees, and 21.2 degrees. Speed and texture density were also varied. The duration of reported self-motion (a) decreased with increased speed, (b) failed to increase with increased visual angle, and (c) decreased with visual angle at the highest speed level. In a second experiment, subjects rated the perceived depth of the displays. The speed and speed/area interaction effects on judged depth matched those found for induced self-motion. These results suggest an extension of the focal/ambient theory: In addition to a more primitive ambient processing mode that requires peripheral vision, there is a higher level system concerned with ambient processing that functions in the central visual field and uses more complex stimulus information, such as internal depth represented in a radially expanding pattern.  相似文献   

16.
Previous vection research has tended to minimise visual-vestibular conflict by using optic-flow patterns which simulate self-motions of constant velocity. Here, experiments are reported on the effect of adding 'global-perspective jitter' to these displays--simulating forward motion of the observer on a platform oscillating in horizontal and/or vertical dimensions. Unlike non-jittering displays, jittering displays produced a situation of sustained visual-vestibular conflict. Contrary to the prevailing notion that visual-vestibular conflict impairs vection, jittering optic flow was found to produce shorter vection onsets and longer vection durations than non-jittering optic flow for all of jitter magnitudes and temporal frequencies examined. On the basis of these findings, it would appear that purely radial patterns of optic flow are not the optimal inducing stimuli for vection. Rather, flow patterns which contain both regular and random-oscillating components appear to produce the most compelling subjective experiences of self-motion.  相似文献   

17.
Large circular displays rotating around the line of sight produce an illusion in which the seen orientation of the true vertical is shifted in a direction opposite to the display’s motion. Two experiments were performed to determine whether the magnitude of this illusory tilt is a function of the area of display elements, of their boundary length, or of their spatial frequency. In Experiment 1, 12 subjects viewed each of nine displays across which the number and area of the circular elements were independently varied. Three of the displays were equated for the area of their elements. The results suggested that tilt magnitude and onset latency could be explained by a boundary length effect. A second experiment tested eight subjects on two displays, equated for element boundary length but differing in the spatial frequency of the elements. The displays produced closely similar illusory trite corroborating the view that, within broad limits, element boundary length—and not spatial frequency or area—determines the size and onset latency of illusory tilt. A third experiment confirmed previous research in finding greater tilt and more rapid onset with more peripherally projected displays.  相似文献   

18.
The perception of the pictorial depth cue of overlapping was studied in children 3, 5, and 7 yr. old. Both a sequential and a simultaneous picture/object-matching task were used to test sensitivity. All age groups successfully perceived the depth relation information provided by pictorial overlapping. Height on the picture plane, which projectively covaries with overlapping, was not consistently used as a depth cue by any age group. Children's drawings were also analyzed for the presence of distance information. The drawings of the 3- and 5-yr. old children contained no overlapping cues and indicated a general lack of understanding of the third demension behind the picture plane. Seven-yr.-old children showed the beginnings of this understanding through their use of size perspective and height on the picture plane as depth cues. For all ages the production of the overlapping cue lags behind its perception.  相似文献   

19.
The authors examined the ability of older adults to modify their search strategies to detect changes in dynamic displays. Older adults who made few eye movements during search (i.e., covert searchers) were faster and more accurate compared with individuals who made many eye movements (i.e., overt searchers). When overt searchers were instructed to adopt a covert search strategy, target detection performance increased to the level of natural covert searchers. Similarly, covert searchers instructed to search overtly exhibited a decrease in target detection performance. These data suggest that with instructions and minimal practice, older adults can ameliorate the cost of a poor search strategy.  相似文献   

20.
Prior experiences of a stimulus facilitate reprocessing of that stimulus on a subsequent occasion. This relative ease and speed with which information is processed is defined as fluency and can constitute a basis for memory judgment. Fluency can also be manipulated on line by perceptual bias (e.g., levels of noise), leading to an increase in recognition for items processed more fluently (e.g., items with less noise). Previous experiments using Remember-Know paradigm have shown an impact of perceptual fluency only on familiarity and not on recollection. Recent episodic memory models have postulated a strong link between episodic memory and spatial processes, especially with egocentric updating (Gomez et al. in Acta Psychol 132(3):221-227, 2009). The present experiment was conducted to determine whether self-motion fluency affects recognition performance and particularly has an impact on "Remember" responses. Thirty participants learned a 4-min path movie and then had to recognize among short paths if they were part of the learned path, followed by a Remember-Know procedure for recognized items. Self-motion fluency was manipulated with the presence of nimble acceleration applied on a small part of the recognition paths. Results show that the presence of a self-motion fluency increases significantly the proportion of remember responses solely on learned paths. This study spotlights for the first time a specific fluency effect on recollection and indicates an implication of egocentric-updating processing in episodic memory retrieval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号