首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to perceive others’ actions and coordinate our own body movements accordingly is essential for humans to interact with the social world. However, it is still unclear how the visual system achieves the remarkable feat of identifying temporally coordinated joint actions between individuals. Specifically, do humans rely on certain visual features of coordinated movements to facilitate the detection of meaningful interactivity? To address this question, participants viewed short video sequences of two actors performing different joint actions, such as handshakes, high fives, etc. Temporal misalignments were introduced to shift one actor’s movements forward or backward in time relative to the partner actor. Participants rated the degree of interactivity for the temporally shifted joint actions. The impact of temporal offsets on human interactivity ratings varied for different types of joint actions. Based on human rating distributions, we used a probabilistic cluster model to infer latent categories, each revealing shared characteristics of coordinated movements among sets of joint actions. Further analysis on the clustered structure suggested that global motion synchrony, spatial proximity between actors, and highly salient moments of interpersonal coordination are critical features that impact judgments of interactivity.  相似文献   

2.
Using proper technique in different sports is an inevitable factor. In this study, available techniques for snatch weightlifting are mathematically evaluated. The optimal motion trajectory is a technique used by weightlifters, which could be determined based on minimizing specific object functions. Object functions based on total kinetic energy, total torque and total power and some new multiobjective functions are minimized using genetic algorithm and the minimax principle. Some important motion characteristics of 13 professional weightlifters were extracted and used to validate the mathematical results. The double knee bending (DKB) technique was studied as a benchmark test. Some important movement features of the technique were shown by the mathematical analysis when applying an object function, that minimized joint torques and powers of different muscles independently. An object function based on joint forces did not show these features.  相似文献   

3.
One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.  相似文献   

4.
Spatial Coupling in the Coordination of Complex Actions   总被引:7,自引:0,他引:7  
The majority of investigations on coordinated action have focused on temporal constraints in movements. Recent studies have demonstrated spatial constraints when the hands produce different trajectory shapes simultaneously. The focus of the current study was to determine whether spatial coupling occurs in individual parameters of the actions, or whether the shapes per se undergo accommodation. Subjects were tested on a bimanual paradigm to investigate the nature of spatial constraints in complex tasks. Shape and size of the required trajectories were varied for the two limbs. When trajectories that require different shapes were assigned to the two hands,disruption in the spatial characteristics of the trajectories was observed. Disruption in the global patterns of the trajectories could be described on the basis of coupling in individual parameters of action, direction, and amplitude, which could be inferred by decomposing the trajectories into orthogonal components. Amplitude accommodation in these orthogonal components of motion increased linearly with the difference in required amplitude for the two limbs. Interpretations of these effects suggest that directional coupling is a result of interference between two different response plans, whereas amplitude coupling may be related to either planning or execution variables. These results strongly suggest the need for further investigation of the spatial domain of complex coordinated action.  相似文献   

5.
The purpose of this study was to examine the mechanisms underlying control of distance during multijoint movements in different directions. The findings revealed 2 sequential muscle torque impulses, which correlated with 2 events in the hand acceleration profile. These 2 events occurred prior to peak velocity, characterizing control in the initial acceleration phase of motion. The contribution of shoulder and elbow joint torque to each event varied with movement direction. However, regardless of direction, these 2 torque events appeared to be functionally distinguishable: a preplanned initiation event was responsible for the initial hand acceleration, whereas a 2nd modulation event adjusted acceleration in compensation for variations in acceleration. Thus, the findings support the idea that control of distance during multijoint movement occurs through sequential control mechanisms.  相似文献   

6.
P. McLeod 《Visual cognition》2013,21(4):363-392
Following bilateral extrastriate damage to areas that include the suspected human homologue of V5/MT, the patient LM has a specific deficit in processing moving stimuli. She has difficulty detecting the movement or coding the velocity of single moving dots. Nevertheless, we find that she can report human actions in Johansson “biological motion ”; displays. This requires the accurate coding of the direction and velocity of many moving dots. The implication is that structure can be extracted from motion in regions of visual cortex other than those traditionally associated with motion processing. However, she cannot report the spatial disposition of the actors whose actions she has recognized, not their movement in depth relative to her. A possible interpretation is that coding in these additional regions is primarily object-centred. Adding a small number of random stationary “noise” dots to the display prevents her from identifying the actions, suggesting that segregation by motion is implemented within the traditional movement areas.  相似文献   

7.
It is known that coordination between joint movements is crucial for the achievement of motor tasks and has been studied extensively. Especially, in sports biomechanics, researchers are interested in determining which joint movements are coordinated to achieve a motor task. However, this issue cannot be easily addressed with the methods employed in previous studies. Therefore, we aimed to propose a method for identifying joint coordination. Subsequently, we examined which joint movements were coordinated using accurate overhead throwing, which required reduction in vertical hand velocity variability. Fourteen baseball players participated by attempting throwing using a motion capture system. The index of coordination for each joint movement and the effect of deviation of one joint movement on vertical hand velocity were quantified. Our results showed that the shoulder internal/external rotation angle (θ1-IE) and the other joint movements or the shoulder horizontal flexion/extension angular velocity (ω1-FE) and the other joint movements were coordinated. These results could be explained by the fact that the effects of the deviation of the shoulder internal rotation angle (θ1-I) and shoulder horizontal flexion angular velocity (ω1-F) on vertical hand velocity were larger than those of the other joint movements. This meant that it was necessary to cancel the deviations of θ1-IE and ω1-FE by the other joint movements. These findings indicate that the method proposed in this study enables the identification of which joint movements are coordinated in multiple degrees of freedom.  相似文献   

8.
This study examined influences of social context on movement parameters in a pick-and-place task. Participants' motion trajectories were recorded while they performed sequences of natural movements either working side-by-side with a partner or alone. It was expected that movement parameters would be specifically adapted to the joint condition to overcome the difficulties arising from the requirement to coordinate with another person. To disentangle effects based on participants' effort to coordinate their movements from effects merely due to the other's presence, a condition was included where only one person performed the task while being observed by the partner. Results indicate that participants adapted their movements temporally and spatially to the joint action situation: Overall movement duration was shorter, and mean and maximum velocity was higher when actually working together than when working alone. Pick-to-place trajectories were also shifted away from the partner in spatial coordinates. The partner's presence as such did not have an impact on movement parameters. These findings are interpreted as evidence for the use of implicit strategies to facilitate movement coordination in joint action tasks.  相似文献   

9.
Mass-inertia loads on muscles change with posture and with changing mechanical interactions between the body and the environment. The nervous system must anticipate changing mass-inertia loads, especially during fast multi-joint coordinated movements. Riemannian geometry provides a mathematical framework for movement planning that takes these inertial interactions into account. To demonstrate this we introduce the controlled (vs. biomechanical) degrees of freedom of the body as the coordinate system for a configuration space with movements represented as trajectories. This space is not Euclidean. It is endowed at each point with a metric equal to the mass-inertia matrix of the body in that configuration. This warps the space to become Riemannian with curvature at each point determined by the differentials of the mass-inertia at that point. This curvature takes nonlinear mass-inertia interactions into account with lengths, velocities, accelerations and directions of movement trajectories all differing from those in Euclidean space. For newcomers to Riemannian geometry we develop the intuitive groundwork for a Riemannian field theory of human movement encompassing the entire body moving in gravity and in mechanical interaction with the environment. In particular we present a geodesic synergy hypothesis concerning planning of multi-joint coordinated movements to achieve goals with minimal muscular effort.  相似文献   

10.
Spatial topological constraints in a bimanual task.   总被引:11,自引:0,他引:11  
Previous research has shown that the concurrent performance of two manual tasks results in a tight temporal coupling of the limbs. The intent of the present experiment was to investigate whether a similar coupling exists in the spatial domain. Subjects produced continuous drawing of circles and lines, one task at a time or bimanually, for a 20 s trial. In bimanual conditions in which subjects produced the circle task with one hand and the line task with the other, there was a clear tendency for the movement path of the circle task to become more line-like and the movement path of the line task to become more circle-like, i.e., a spatial magnet effect. A bimanual circle task and a bimanual line task did not exhibit changes in the movement path when compared to single-hand controls. In all bimanual conditions, the hands were tightly temporally locked. The evidence of temporal coupling and concomitant accommodation in the movement path for the conditions in which the hands were producing different shapes suggests that spatial constraints play a role in the governance of bimanual coordinated actions.  相似文献   

11.
Evidence of motor planning in infant reaching behavior   总被引:1,自引:0,他引:1  
When adults reach for an object, kinematic measures of their approach movement are affected by what they intend to do after grasping it. We examined whether such future intended actions would be reflected in the approach-to-grasp phase of infant reaching. Twenty-one 10-month-old infants were encouraged to either throw a ball into a tub or fit it down a tube. Kinematic measures of the approach phase of the reach toward the ball were obtained using a motion analysis system. Infants, like adults, reached for the ball faster if they were going to subsequently throw it as opposed to using it in the precision action. The perceptual aspects of the ball were the same and cannot account for these kinematic differences. Infants appear to be planning both segments of their actions in advance. Our findings provide evidence for a level of sophistication in infant motor planning not reported before.  相似文献   

12.
The authors of this article suggest that the slight but consistent posture-dependent curvature of the spatial paths in the kinematic transformation between intrinsic and extrinsic coordinates may result in a systematic curvature of movements initially planned as straight-line trajectories toward the target. A kinematic planning model is presented that takes into account the anisotropy of the intrinsic and extrinsic transformation and tends to avoid movements that require excessive joint rotations by introducing slight deviations from a straight-line trajectory. Preliminary simulations showed reasonably good agreement with experimental data, especially considering that the current model is strictly based on kinematics. A quantitative analysis showed that the strategy used in the model achieves a favorable compromise between straight-line movements and angular joint changes: By slightly increasing the spatial length of the movement (i.e., by introducing curvature), an individual can greatly reduce the total amount of joint rotation required to produce the movement.  相似文献   

13.
Coupling of spine and hip joints during full body reaching tasks was investigated in 16 participants (8 male and 8 female) who performed reaching tasks at comfortable and fast-paced movement speeds to three targets located in a para-sagittal plane. The participants paused at target contact for 500ms and then returned to an upright posture. Three-dimensional joint motions of the spine and hip were recorded using an electromagnetic tracking device. We found an effect of movement phase (i.e., reach and return) on the onset timing of the spine and hip joints. For most target locations and movement speeds, spine motion onset preceded hip motion onset during the reaching phase of the movement task. In the reach phase, when averaged across all movement conditions, spine joint motion preceded hip joint motion by an average of 48.9ms. In contrast, in the return phase, hip joint motion preceded spine joint motion by an average of 63.0ms. Additionally, when participants were instructed to use either a knee flexion or knee extension strategy to perform the reaching tasks there was no effect of movement strategy on timing of the spine and hip. There was also no effect of target height on the spine-hip ratio, but as movement speed increased, the spine/hip ratio decreased for all target locations due primarily to an increase in hip joint excursion. The findings indicate clear differences in onset timing of the spine and hip joints during reaching tasks that necessitate some forward bending of the trunk and that onset timing is reversed for the return to an upright posture.  相似文献   

14.
Previous research on dual-tasks has shown that, under some circumstances, actions impair the perception of action-consistent stimuli, whereas, under other conditions, actions facilitate the perception of action-consistent stimuli. We propose a new model to reconcile these contrasting findings. The planning and control model (PCM) of motorvisual priming proposes that action planning binds categorical representations of action features so that their availability for perceptual processing is inhibited. Thus, the perception of categorically action-consistent stimuli is impaired during action planning. Movement control processes, on the other hand, integrate multi-sensory spatial information about the movement and, therefore, facilitate perceptual processing of spatially movement-consistent stimuli. We show that the PCM is consistent with a wider range of empirical data than previous models on motorvisual priming. Furthermore, the model yields previously untested empirical predictions. We also discuss how the PCM relates to motorvisual research paradigms other than dual-tasks.  相似文献   

15.
ABSTRACT— The motor-program concept, emphasizing how actions are represented in the brain, helped bring the study of motor control into the realm of cognitive psychology. However, interest in representational issues was in limbo for much of the past 30 years, during which time the focus was on biomechanical and abstract accounts of the constraints underlying coordinated movement. We review recent behavioral and neuroscientific evidence that highlights multiple levels of constraints in bimanual coordination, with an emphasis on work demonstrating that a primary source of constraint arises from the manner in which action goals are represented.  相似文献   

16.
17.
Infant treadmill steps have many temporal and kinematic similarities to adult walking. Kinematic similarities can result from different patterns of underlying torque, however. In this study, we used inverse dynamics to compare the patterns and contributions of active (muscle) and passive (gravity and motion-dependent) torques in the swing phase of treadmill stepping in 7-month-old infants and adults. Results indicated that adults consistently used muscle torque to initiate and terminate swing, but that passive torques accounted for leg motion during most of the swing phase. Infants, in contrast, displayed multiple patterns of torque contributions during swing. In the most frequently occurring infant pattern, muscle torque remained flexor throughout swing and joint reversals were due to the dominant passive gravitational torque. The kinetic data suggest that the temporally and kinematically similar treadmill steps produced by adults and infants do not emanate from a unique set of neural commands to the muscles, but from a flexible interplay between multiple internal as well as external elements. These data suggest that the intrinsic dynamics of the human system provide a medium out of which, given a supportive context, stable patterns can emerge spontaneously. During development, voluntary controlled movement patterns must build on these intrinsic dynamics.  相似文献   

18.
The role of arms in compliant-surface jumping for maximizing backward somersault rotations is studied using multi-segment models and is applied to springboard diving. The surface (springboard) is modeled by a rigid bar with a rotational spring with a hinged end and point mass at the tip. Planar four- and five-segment human models are used (with the fifth segment representing the arms) and are driven by torque actuators at the ankle, knee, hip, and shoulder. Each joint torque is the product of maximum isometric torque and three variable functions depending on instantaneous joint angle, angular velocity, and activation level, respectively. Movement simulation starts from a balanced initial posture and ends at jump takeoff. The objective is to find joint torque activation patterns during board contact so that the number of backward rotations in flight is maximized. Kinematic differences in jumps with and without arms are mainly in smaller takeoff vertical velocity and more flexed knee and hip in the former. In both jumps, joint torque/activations are similar in their minor flexion-full extension patterns. Maximum hip torque is larger with arms but maximum knee torque is larger without arms. Except at the knee, more joint work can be done with arm swing. Total angular momentum is increased considerably by arm motion because of its remote contribution. Consequently segment remote contributions to total angular momentum are much larger in jumping with arms. Shoulder strength helps generate angular momentum only to a certain limit. If more work is used to generate horizontal velocity away from the board, the amount of total angular momentum is reduced.  相似文献   

19.
Repetitive movements are considered a risk factor for developing practice-related musculoskeletal disorders. Intra-participant kinematic variability might help musicians reduce the risk of injury during repetitive tasks. No research has studied the effects of proximal motion (i.e., trunk and shoulder movement) on upper-limb movement variability in pianists. The first objective was to determine the effect of proximal movement strategies and performance tempo on both intra-participant joint angle variability of upper-limb joints and endpoint variability. The second objective was to compare joint angle variability between pianist's upper-limb joints. As secondary objectives, we assessed the relationship between intra-participant joint angle variability and task range of motion (ROM) and documented inter-participant joint angle variability. The upper body kinematics of 9 expert pianists were recorded using an optoelectronic system. Participants continuously performed two right-hand chords (lateral leap motions) while changing movements based on trunk motion (with and without) and shoulder motion (counter-clockwise, back-and-forth, and clockwise) at two tempi (slow and fast). Trunk and shoulder movement strategies collectively influenced variability at the shoulder, elbow and, to a lesser extent, the wrist. Slow tempi led to greater variability at wrist and elbow flexion/extension compared to fast tempi. Endpoint variability was influenced only along the anteroposterior axis. When the trunk was static, the shoulder had the lowest joint angle variability. When trunk motion was used, elbow and shoulder variability increased, and became comparable to wrist variability. ROM was correlated with intra-participant joint angle variability, suggesting that increased task ROM might result in increased movement variability during practice. Inter-participant variability was approximately six times greater than intra-participant variability. Pianists should consider incorporating trunk motion and a variety of shoulder movements as performance strategies while performing leap motions at the piano, as they might reduce exposure to risks of injury.  相似文献   

20.
Leg joint coordination systematically changes over the first months of life, yet there is minimal data on the underlying change in muscle torques that might account for this change in coordination. The purpose of this study is to investigate the contribution of torque changes to early changes in leg joint coordination. Kicking actions were analyzed of 10 full-term infants between 6 and 15-weeks of age using three-dimensional kinematics and kinetics. We found 11 of 15 joint angle pairs demonstrated a change from more in-phase intralimb coordination at 6-weeks to less in-phase coordination at 15-weeks. Although the magnitude of joint torques normalized to the mass of the leg remained relatively consistent, we noted more complex patterns of torque component contribution across ages. By focusing on the change in torques associated with hip–knee joint coordination, we found that less in-phase hip–knee joint coordination at 15-weeks was associated with decreased influence of knee muscle torque and increased influence of knee gravitational and motion-dependent torques, supporting that infants coordinate hip muscle torque with passive knee gravitational and motion-dependent torques to generate kicks with reduced active knee muscle torque. We propose that between 6 and 15-weeks of age less in-phase hip–knee coordination emerges as infants exploit passive dynamics in the coordination of hip and knee motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号