首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We tested the effects of using a prosthesis for substitution of vision with audition (PSVA) on sensitivity to the Ponzo illusion. The effects of visual experience on the susceptibility to this illusion were also assessed. In one experiment, both early-blind and blindfolded sighted volunteers used the PSVA to explore several variants of the Ponzo illusion as well as control stimuli. No effects of the illusion were observed. The results indicate that subjects focused their attention on the two central horizontal bars of the stimuli, without processing the contextual cues that convey perspective in the Ponzo figure. In a second experiment, we required subjects to use the PSVA to consider the two converging oblique lines of the stimuli before comparing the length of the two horizontal bars. Here we were able to observe susceptibility to the Ponzo illusion in the sighted group, but to a lesser extent than in a sighted non-PSVA control group. No clear effect of the ilusion was obtained in early-blind subjects. These results suggest that, at least in sighted subjects, perception obtained with the PSVA shares perceptual processes with vision. Visual experience appears mandatory for a Ponzo illusion to occur with the PSVA.  相似文献   

2.
3.
Three experiments establish the size-weight illusion as a primarily haptic phenomenon, despite its having been more traditionally considered an example of vision influencing haptic processing. Experiment 1 documents, across a broad range of stimulus weights and volumes, the existence of a purely haptic size-weight illusion, equal in strength to the traditional illusion. Experiment 2 demonstrates that haptic volume cues are both sufficient and necessary-for a full-strength illusion. In contrast, visual volume cues are merely sufficient, and produce a relatively weaker effect. Experiment 3 establishes that congenitally blind subjects experience an effect as powerful as that Of blindfolded sighted observers, thus demonstrating that visual imagery is also unnecessary for a robust size-weight illusion. The results are discussed in terms of their implications for both sensory and cognitive theories of the size-weight illusion. Applications of this work to a human factors design and to sensor-based systems for robotic manipulation are also briefly considered.  相似文献   

4.
The haptic perception of vertical, horizontal, +45° oblique, and +135° oblique orientations was studied in completely blind adults. The purpose was to determine whether the variations of the gravitational cues provided by the arm-hand system during scanning would affect the manifestation of the oblique effect (lower performance in oblique orientations than in vertical-horizontal ones) as they did in blindfolded sighted people (Gentaz & Hatwell, 1996). In blindfolded sighted adults, the oblique effect was reduced or absent when the magnitude of gravitational cues was decreased. If visual experience participated in the haptic oblique effect, we should observe no oblique effect in early blind subjects in the conditions of manual exploration where late blind and blindfolded sighted manifest this effect. The magnitude of gravitational cues was therefore varied by changing gravity constraints, whereas the variability of these cues was varied by changing the plane in which the task was performed: horizontal (low variability) and frontal (high variability). Early and late blind adults were asked to explore haptically a rod and then to reproduce its orientation ipsilateraUy in one of two exploratory conditions in each plane. In the horizontal plane, the oblique effect was absent, whatever the gravity constraints, in both groups (early and late blind subjects). In the frontal plane, the oblique effect was present, whatever the gravity constraints, in both groups. Taken together, these results showed that, in blind people, the variability of gravitational cues played a role in the haptic oblique effect; no effect of previous visual experience was observed.  相似文献   

5.
It has been shown that congenital blindness can lead to anomalies in the integration of auditory and tactile information, at least under certain conditions. In the present study, we used the parchment-skin illusion, a robust illustration of sound-biased perception of touch based on changes in frequency, to investigate the specificities of audiotactile interactions in early- and late-onset blind individuals. Blind individuals in both groups did not experience any illusory change in tactile perception when the frequency of the auditory signal was modified, whereas sighted individuals consistently experienced the illusion. This demonstration that blind individuals had reduced susceptibility to an auditory-tactile illusion suggests either that vision is necessary for the establishment of audiotactile interactions or that auditory and tactile information can be processed more independently in blind individuals than in sighted individuals. In addition, the results obtained in late-onset blind participants suggest that visual input may play a role in the maintenance of audiotactile integration.  相似文献   

6.
The haptic horizontal-vertical illusion was studied in two experiments. In Experiment 1, the illusion was relatively weak in sighted subjects and depended on stimulus size and the nature of the figure, that is, whether the pattern was an inverted-T or L shape. Experiment 2 compared early blind and late blind subjects. The illusion was present for an inverted-T figure but absent for an L figure in late blind subjects. However, the early blind subjects treated both the L and T figures as similar and showed the illusion to both. These results support the idea that visual experience may alter haptic judgments in sighted and late blind subjects.  相似文献   

7.
Summary The manner in which sighted, sighted-but-blindfolded, late-blind (subsequent to 7 years of age), and congenitally blind (blind since birth) persons employ physical parameters in determining weight and volume of functional objects was studied. Eight stimuli each having a unique combination of physical specifications were judged, using both a match and estimate procedure. The results indicated that information derived from mass, displacement, and density provides the basis for volumetric and weight judgements of sighted persons. Non-sighted individuals employ this information differently than do sighted persons. Likewise, individuals after 7 years of age retain information provided by early visual experience and thus may employ a combination of kinesthetic and visual cues. The results also show that sighted and late-blind groups may employ visual perception or memory in determining volume, whereas sighted-but-blindfolded persons and the congenitally blind may employ mass in volumetric tasks. All groups may employ mass (and perhaps density) in determining weight, and although the weight judgements of non-sighted groups correlate highly with mass, sighted subjects are more accurate in judgement (i.e. have the smaller constant error). Sighted subjects apparently employ a complex system in determining weight. Age at which blindness occurred and the number of years of blindness had no effect for the late-blind group.  相似文献   

8.
M A Heller 《Perception》1989,18(3):379-389
Two experiments are reported on the contribution of visual experience to tactile perception. In the first experiment, sighted, congenitally blind, and late blind individuals made tactual matches to tangible embossed shapes. In the second experiment, the same subjects attempted tactile identification of raised-line drawings. The three groups did not differ in the accuracy of shape matching, but both groups of blind subjects were much faster than the sighted. Late blind observers were far better than the sighted or congenitally blind at tactile picture identification. Four of the twelve pictures were correctly identified by most of the late blind subjects. The sighted and congenitally blind performed at comparable levels in picture naming. There was no evidence that visual experience alone aided the sighted in the tactile task under investigation, since they performed no better than did the early blind. The superiority of the late blind suggests that visual exposure to drawings and the rules of pictorial representation may help tactile picture identification when combined with a history of tactual experience.  相似文献   

9.
We examined haptic perception of the horizontal in visually impaired people. Blind people (late blind and congenitally blind), persons with very low vision, and blindfolded sighted individuals felt raised-line drawings of jars at four angles. They had to demonstrate their understanding that water remains horizontal, despite jar tilt, by selecting the correct raised-line drawing given four choices. Low-vision subjects, with near perfect scores, performed significantly better than the other groups of subjects. While the late-blind and blindfolded sighted subjects performed slightly better than the congenitally blind participants, the difference between the late-blind and congenitally blind groups was nonsignificant. The performance of the congenitally blind subjects indicates that visual experience is not necessary for the development of an understanding that water level stays horizontal, given container tilt.  相似文献   

10.
Research has examined the nature of visual imagery in normally sighted and blind subjects, but not in those with low vision. Findings with normally sighted subjects suggest that imagery involves primary visual areas of the brain. Since the plasticity of visual cortex appears to be limited in adulthood, we might expect imagery of those with adult-onset low vision to be relatively unaffected by these losses. But if visual imagery is based on recent and current experience, we would expect images of those with low vision to share some properties of impaired visual perception. We examined key parameters of mental images reported by normally sighted subjects, compared to those with early- and late-onset low vision, and with a group of subjects with restricted visual fields using an imagery questionnaire. We found evidence that those with reduced visual acuity report the imagery distances of objects to be closer than those with normal acuity and also depict objects in imagery with lower resolution than those with normal visual acuity. We also found that all low vision groups, like the normally sighted, image objects at a substantially greater distance than when asked to place them at a distance that ‘just fits’ their imagery field (overflow distance). All low vision groups, like the normally sighted, showed evidence of a limited visual field for imagery, but our group with restricted visual fields did not differ from the other groups in this respect. We conclude that imagery of those with low vision is similar to that of those with normal vision in being dependent on the size of objects or features being imaged, but that it also reflects their reduced visual acuity. We found no evidence for a dependence on imagery of age of onset or number of years of vision impairment.  相似文献   

11.
Bilateral mirror symmetry, especially vertical symmetry, is a powerful phenomenon in spatial organization of visual shapes. However, the causes of vertical symmetry salience in visual perception are not completely clear. Here we investigated whether the perceptual salience of vertical symmetry depends on visual experience by testing a group of congenitally blind individuals in a memory task in which either horizontal or vertical symmetry was used as an incidental feature. Both blind and sighted subjects remembered more accurately configurations that were symmetrical compared to those that were not. Critically, whereas sighted subjects displayed a higher level of facilitation by vertical than horizontal symmetry, no such difference was found in the blind. This suggests that the perceptual salience of the vertical dimension is visually based.  相似文献   

12.
Sighted individuals are less accurate and slower to localize sounds coming from the peripheral space than sounds coming from the frontal space. This specific bias in favour of the frontal auditory space seems reduced in early blind individuals, who are particularly better than sighted individuals at localizing sounds coming from the peripheral space. Currently, it is not clear to what extent this bias in the auditory space is a general phenomenon or if it applies only to spatial processing (i.e. sound localization). In our approach we compared the performance of early blind participants with that of sighted subjects during a frequency discrimination task with sounds originating either from frontal or peripheral locations. Results showed that early blind participants discriminated faster than sighted subjects both peripheral and frontal sounds. In addition, sighted subjects were faster at discriminating frontal sounds than peripheral ones, whereas early blind participants showed equal discrimination speed for frontal and peripheral sounds. We conclude that the spatial bias observed in sighted subjects reflects an unbalance in the spatial distribution of auditory attention resources that is induced by visual experience.  相似文献   

13.
Auvray M  Myin E 《Cognitive Science》2009,33(6):1036-1058
Sensory substitution devices provide through an unusual sensory modality (the substituting modality, e.g., audition) access to features of the world that are normally accessed through another sensory modality (the substituted modality, e.g., vision). In this article, we address the question of which sensory modality the acquired perception belongs to. We have recourse to the four traditional criteria that have been used to define sensory modalities: sensory organ, stimuli, properties, and qualitative experience ( Grice, 1962 ), to which we have added the criteria of behavioral equivalence ( Morgan, 1977 ), dedication ( Keeley, 2002 ), and sensorimotor equivalence ( O'Regan & Noë, 2001 ). We discuss which of them are fulfilled by perception through sensory substitution devices and whether this favors the view that perception belongs to the substituting or to the substituted modality. Though the application of a number of criteria might be taken to point to the conclusion that perception with a sensory substitution device belongs to the substituted modality, we argue that the evidence leads to an alternative view on sensory substitution. According to this view, the experience after sensory substitution is a transformation, extension, or augmentation of our perceptual capacities, rather than being something equivalent or reducible to an already existing sensory modality. We develop this view by comparing sensory substitution devices to other "mind-enhancing tools" such as pen and paper, sketchpads, or calculators. An analysis of sensory substitution in terms of mind-enhancing tools unveils it as a thoroughly transforming perceptual experience and as giving rise to a novel form of perceptual interaction with the environment.  相似文献   

14.
Integrating different senses to reduce sensory uncertainty and increase perceptual precision can have an important compensatory function for individuals with visual impairment and blindness. However, how visual impairment and blindness impact the development of optimal multisensory integration in the remaining senses is currently unknown. Here we first examined how audio‐haptic integration develops and changes across the life span in 92 sighted (blindfolded) individuals between 7 and 70 years of age. We used a child‐friendly task in which participants had to discriminate different object sizes by touching them and/or listening to them. We assessed whether audio‐haptic performance resulted in a reduction of perceptual uncertainty compared to auditory‐only and haptic‐only performance as predicted by maximum‐likelihood estimation model. We then compared how this ability develops in 28 children and adults with different levels of visual experience, focussing on low‐vision individuals and blind individuals that lost their sight at different ages during development. Our results show that in sighted individuals, adult‐like audio‐haptic integration develops around 13–15 years of age, and remains stable until late adulthood. While early‐blind individuals, even at the youngest ages, integrate audio‐haptic information in an optimal fashion, late‐blind individuals do not. Optimal integration in low‐vision individuals follows a similar developmental trajectory as that of sighted individuals. These findings demonstrate that visual experience is not necessary for optimal audio‐haptic integration to emerge, but that consistency of sensory information across development is key for the functional outcome of optimal multisensory integration.  相似文献   

15.
It is often that the spatial senses (vision, hearing and the tactual senses) operate as distinct and independent modalities and, moreover, that vision is crucial to the development of spatial abilities. However, well controlled studies of blind persons with adequate experience show that they can function usefully in space. In other words, vision is not a necessary condition for spatial awareness. On the other hand, thought the blind may be equal or even superior to the sighted when performing spatial tasks within the body space, they may be deficient, either developmentally or absolutely, in tasks which involve events at a distance from the body, principally in auditory localization. One possible explanation of the differences between blind and sighted (McKinney, 1964; Attneave & Benson, 1969, Warren, 1970) is that vision is the primary spatial reference, and inputs from other modalities are fitted to a visual map. Several criticisms of this theory are adduced and an alternative theory derived from Sherrington (1947), in which all sensory inputs map on to efferent patterns, is sketched.  相似文献   

16.
Texture perception in sighted and blind observers   总被引:2,自引:0,他引:2  
The purpose of the present study was to evaluate the utility of visual imagery for texture perception. In Experiment 1, sighted, early-blind, and late-blind observers made relative smoothness judgments of abrasive surfaces using active or passive tough. In Experiment 2, subjects compared vision and touch in the accuracy of smoothness detection, using a broad range of textures, including very fine surfaces. No differences appeared between the sighted and the blind, and it did not matter if touch were active or passive. Vision and touch showed similar performance with relatively coarse textures, but touch was superior to vision for much finer surface textures. The results were consistent with the notion that visual coding of tactual stimuli is not advantageous (or necessary) for texture perception, since touch may hold advantages for the detection of the smoothness of surfaces.  相似文献   

17.
Visual cortical areas are involved in a variety of somatosensory tasks in the sighted, including tactile perception of two-dimensional patterns and motion, and haptic perception of three-dimensional objects. It is still unresolved whether visual imagery or modality-independent representations can better explain such cross-modal recruitment. However, these explanations are not necessarily in conflict with each other and might both be true, if imagery processes can access modality-independent representations. Greater visual cortical engagement in blind compared to sighted people is commonplace during language tasks, and also seems to occur during processing of tactile spatial information. Such engagement is even greater in the congenitally blind compared to the late blind, indicative of enhanced cross-modal plasticity during early development. At the other extreme, short-term visual deprivation of the normally sighted also leads to cross-modal plasticity. Altogether, the boundaries between sensory modalities appear to be flexible rather than immutable.  相似文献   

18.
This article surveys studies of the occurrence, in the haptic modality, of three geometrical illusions well known in vision, and it discusses the nature of the processes underlying these haptic illusions.We argue that the apparently contradictory results found in the literature concerning them may be explained, at least partially, by the characteristics of manual exploratory movements. The Müller-Lyer illusion is present in vision and in haptics and seems to be the result of similar processes in the two modalities. The vertical-horizontal illusion also exists in vision and haptics but is due partly to similar processes (bisection) and partly to processes specific to each modality (anisotropy of the visual field and overestimation of radial vs. tangential manual exploratory movements). The Delboeuf illusion seems to occur only in vision, probably because exploration by the index finger may exclude the misleading context from tactile perception. The role of these haptic exploratory movements may explain why haptics is as sensitive as vision to certain illusions and less sensitive to others.  相似文献   

19.
M A Heller 《Perception》1989,18(1):121-133
Sighted, early blind, and late blind subjects attempted to identify numerals or number sequences printed on their palms. The numerals were either upright, or inverted, or rotated perpendicular to the arm axis. Stimulus rotation degraded recognition in the early blind subjects, suggesting the influence of experience with visual frames of reference. Slower rates of presentation with upright number sequences improved recall in both sighted and blind observers. An experiment on tactual-visual braille recognition in the sighted observers showed that tilt degraded pattern identification, but visual guidance of the fingertip and ballpoint minimized this loss. A further experiment was performed to distinguish between visual imagery and visual frame of reference explanations of the visual guidance effect on recognition of rotated braille. Subjects explored upright or tilted braille characters while viewing only a light emitting diode on the exploratory fingertip. Sight of scanning movements did not aid pattern recognition with tilt. The results indicate that the benefits of visual guidance on recognition of tilted patterns were probably due to frame of reference information. It is concluded that spatial reference information may aid tactile memory in the sighted and late blind, since the early blind performed at a lower level in the retention task. It is proposed that visual imagery may only explain the superiority of the sighted and late blind when familiar stimuli are studied.  相似文献   

20.
Congenitally blind, late blind, and blindfolded sighted controls attempted a Piagetian perspective-taking (three-mountain) task. Piaget used the term perspective to mean point of view (Piaget & Inhelder, 1967, p. 210), and the present usage does not imply linear perspective. Subjects used raised-line drawings to depict alternative points of view of an array of three geometric solid forms (cube, cone, and ball). They then identified the point of view of raised-line drawings. The effect of visual status on accuracy was nonsignificant for both response measures. Using alternating vision of the array and drawings, sighted subjects in a control condition performed like the congenitally blind. However, congenitally blind individuals did require more time than the other subjects for the perspective-taking task. In an additional experiment, no difference was found between the three groups in the accuracy or speed of tactile shape matching. The results suggest that visual imagery and visual experience are not necessary for tactile perspective taking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号