首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, we examined the effects of restricted feeding and of central administration of an orexigenic ghrelin agonist GHRP-6 on peptide mRNA expression in the hypothalamus. We compared rats fed ad libitum with rats that were allowed food for only 2?h every day, and treated with a continuous chronic i.c.v. infusion of GHRP-6 or vehicle. Ad libitum fed rats exposed to GHRP-6 increased their food intake and body weight over 6 days, but, at the end of this period, neuropeptide Y mRNA expression in the arcuate nucleus was not different to that in control rats. By contrast, expression of neuropeptide Y mRNA in the arcuate nucleus was elevated in food-restricted rats, consistent with the interpretation that increased expression reflects increased hunger. However, neuropeptide Y mRNA expression was no greater in food-restricted rats infused with GHRP-6 than in food-restricted rats infused with vehicle; thus if the drive to eat was stronger in rats infused with GHRP-6, this was not reflected by higher levels of neuropeptide Y mRNA expression. Expression of vasopressin mRNA and corticotrophin releasing factor (CRF) mRNA in the paraventricular nucleus (PVN) was not changed by food restriction. GHRP-6 infusion increased CRF mRNA expression in ad libitum rats only.  相似文献   

3.
A demonstration of cell-specific patterns of development in the immature CNS is provided by examples of characteristic, cellspecific time-courses of enzyme development in different classes of brain cells isolated in highly purified form by bulk-separation from the cerebral and cerebellar cortex of the growing rat. The enzymatic analysis was carried out at the level of the nerve and glial cell lysosomes and mitochondria, two subcellular organelles crucial to the economy of all cells. The findings reveal rather similar developmental patterns for the lysosomal hydrolase N-acetyl-β-D-glucosaminidase in neurons and glial cells of the cerebral cortex as well as in two different cerebellar nerve cell types, the Purkinje and the granule cell. However, significant differences in the post-natal chronology of development of the mitochondrial enzyme α-glycerophosphate dehydrogenase were noted between cortical nerve and glial cells, the glial enzyme exhibiting 6-fold higher levels of activity than the neuronal one throughout the first month of postnatal life. The findings emphasize the feasibility as well as the necessity of studies aimed at the elucidation of the cell-specific aspects of the biochemistry of developing nerve and glial cells.  相似文献   

4.
神经肽Y是一个多肽,广泛分布于周围和中枢神经系统,以下丘脑的浓度为高,参与机体神经内分泌、情绪、行为等的调节。 为探讨慢性应激诱导的抑郁模型小鼠脑内神经肽Y (NPY)的表达,以及抗抑郁药的作用机理,采用慢性应激与孤养方法,建立抑郁小鼠模型。用旷场行为 (Open-Field)法,观察模型组与正常对照组行为学改变方面的差异。将36 只抑郁模型小鼠随机分成盐酸氟西汀组、盐酸阿米替林组、生理盐水治疗组,并与12 只正常对照组比较。用半定量逆转录-聚合酶联反应(RT-PCR) 法、细胞酶联免疫法及蛋白免疫印迹(Western-blot) 法、免疫组织化学法,比较四组小鼠下丘脑NPY 的表达。结果表明:(1)与正常组比较,抑郁模型组小鼠活动总路程与活动次数减少(p< 0.01),体重增速下降(p< 0.05)。(2)与正常组比较,抑郁模型组小鼠下丘脑NPY 的mRNA 表达下降(p< 0.01);经盐酸氟西汀、盐酸阿米替林治疗后,下丘脑NPY 的mRNA 及蛋白表达增高,与生理盐水组比较差异显著(p< 0.01)。(3) 与正常组比较,生理盐水治疗组胞膜和胞质呈棕黄色染色,显示出明显的免疫组化阳性反应;经盐酸氟西汀、盐酸阿米替林治疗后,胞膜和胞质的着色与背景色接近,免疫组化呈弱阳性、阴性反应。提示抑郁模型组小鼠脑内NPY 表达水平有显著下降,使用抗抑郁药有利于提高脑内NPY 的mRNA 及蛋白表达,可能是此类药物产生抗抑郁效应的机制之一。  相似文献   

5.
Successful navigation requires interactions among multiple but overlapping neural pathways mediating distinct capabilities, including egocentric (self-oriented, route-based) and allocentric (spatial, map-based) learning. Route-based navigation has been shown to be impaired following acute exposure to the dopaminergic (DA) drugs (+)-methamphetamine and (+)-amphetamine, but not the serotoninergic (5-HT) drugs (±)-3,4-methylenedioxymethamphetamine or (±)-fenfluramine. The dopaminergic-rich neostriatum is involved in both allocentric and egocentric navigation. This experiment tested whether dorsal striatal DA loss using bilateral 6-hydroxydopamine (6-OHDA) injections impaired one or both types of navigation. Two weeks following 6-OHDA injections, rats began testing in the Cincinnati water maze (CWM) followed by the Morris water maze (MWM) for route-based and spatial navigation, respectively. 6-OHDA treatment significantly increased latency and errors in the CWM and path length, latency, and cumulative distance in the MWM with no difference on cued MWM trials. Neostriatal DA levels were reduced by 80% at 2 and 7 weeks post-treatment. In addition, 6-OHDA increased DA turnover and decreased norepinephrine (NE) levels. 6-OHDA injections did not alter monoamine levels in the prefrontal cortex. The data support that neostriatal DA modulates both types of navigation.  相似文献   

6.
There is strong evidence about the importance of catecholamines and calcium signaling in heart function. Also, interaction of these two systems is well documented. Catecholamines signal through adrenergic receptors, and further activate calcium transport either from the extracellular space, or from the intracellular calcium stores. This review summarizes current knowledge on catecholamine production in the heart, with special focus on the final enzyme in the catecholamine synthesizing pathway, phenylethanolamine N-methyltransferase (PNMT), in different cell types in the heart. Further, signaling through different types of adrenergic receptors in physiological conditions and after exposure to different stressors is discussed. Also, part of this review considers activation of an intracellular calcium transport system via inositol 1,4,5-trisphosphate receptor and to possible functional consequences in control and stress conditions.  相似文献   

7.
Global cerebral ischemia is well known to cause neuronal necrosis in selectively vulnerable sectors of the hippocampus. Since the hippocampus of the rat is involved in spatial navigation, learning, and memory, selective deficits in these abilities may arise from ischemic brain damage. Previous studies have shown (a) a detectable neurobehavioural deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus and (b) a reduction of ischemic neuronal necrosis with the noncompetitive N-methyl-D-Aspartate (NMDA) antagonist MK-801. This study was designed to determine the relationship between the improvement in structural brain damage in postischemically treated rats and any improvement in neurobehavioural performance, using a learning-set water task. Seventeen male Wistar rats received 10.5 min of forebrain ischemia induced by carotid clamping and hypotension. Brain temperature was estimated with probes in the temporalis muscle. Ten of these animals received no therapy (controls), and seven animals received 5 mg/kg MK-801 iv, 20 min postischemia. Six additional rats underwent a sham operation. Postischemic hypothermia was prevented with heating lamps. Four controls and one MK-801 treated animal died. The survivors were then tested on a place learning-set task in a swimming pool paradigm, and quantitative histopathologic analysis of their entire brains was done. The learning-set task revealed defects in spatial navigation, reflected as increased errors and latency in the performance of the untreated control rats. The performance of the MK-801 treated group progressively approached that of sham-operated rats over the course of testing and was significantly better than controls. Importantly, no long-term detrimental effect of MK-801 on the learning-set task performance was seen. Quantitative neuropathology revealed significantly less damage in the MK-801 treated group in all major brain regions. In the hippocampus, MK-801 treated animals showed hippocampal damage limited to the vulnerable portion of the pyramidal cell band comprising 48.8% of the CA1 pyramidal cells, as opposed to 72.4% in untreated controls. Extra-hippocampal damage was evident only in untreated control animals. MK-801 totally prevented neuronal necrosis in both the cerebral cortex and striatum and also prevented infarction in the neocortex and thalamus. Three conclusions emerge from the study. First, postischemic MK-801 mitigates structural brain damage in several brain regions in the absence of concomitant hypothermia. Second, neurobehavioural performance appears to be improved by MK-801 when performance trends are examined, but is somewhat less sensitive than quantitated histopathology due to compounding interanimal variation in performance abilities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Manda, a natural product made by yeast fermentation of many fruits and black sugar, has antioxidant activity. In the present study, manda prevented stomach ulcers caused by immobilization-induced emotional stress. Manda [5% manda solution (w/v)] and saline as control, were administered by a canula into the stomach of each experimental animal subsequently after 1, 2, 3, 4, and 5 hours from the start of the emotional stress. We classified the severity of gastric lesion formation induced by immobilization with each rat lying on its back for 6 hours at room temperature on a five-grade scale. The control rats all showed congestion and some degree of bleeding in the mucosa of the stomach. However, of the experimental rats, one showed no hemorrhagic lesions only congestion in four cases, and slight or moderate bleeding in eight cases with no massive bleeding cases. The distribution of these data significantly differ from that of the control rats, which suffered the greater damage (X2=10.589,p<0.05). In light microscopic examinations, the control rats showed necrosis in the gastric mucous membranes, desquamation, and bleeding of gastric mucosa. However, the rats treated with manda showed only congestion and did not show erosion or hemorrhage. These results suggest that manda or manda metabolite(s) was absorbed from the stomach and may have produced these action. In the meantime, we are analyzing manda components to try to isolate the active ingredient(s)  相似文献   

9.
Period 2 (Per2) is an important clock gene involved in the regulation of the major circadian clock in the mammalian central nervous system, the suprachiasmatic nucleus. In addition, Per2 is expressed in many other stress-sensitive brain structures. We have previously showed that the non-preganglionic Edinger-Westphal nucleus (npEW) is the main site of the corticotropin-releasing factor peptide family member urocortin 1 (Ucn1) and that this peptide undergoes conspicuous expression changes in response to various stressors. Here, we hypothesized that in the rat npEW both Per2 and Ucn1 would be produced in a diurnal, rhythmical fashion. This hypothesis was tested by following this expected rhythm on two days in rats killed at four time points each day (Zeitgeber times 0, 6, 12, and 18). We showed the co-existence of Per2 and Ucn1 in the npEW with double-label immunofluorescence and demonstrated with quantitative RT-PCR and semi-quantitative immunocytochemistry diurnal rhythms in Per2 mRNA expression and Per2 protein content, each on a single different day, with a minimum at lights-off and a maximum at lights-on. We furthermore revealed a diurnal rhythm in the number of Ucn1-immunopositive neurones and in their Ucn1 peptide content, with a minimum at night and at the beginning of the light period and a peak at lights-off, while the Ucn1 mRNA content paralleled the Per2 mRNA rhythm. The rhythms were accompanied by a diurnal rhythm in plasma corticosterone concentration. Our results are in line with the hypothesis that both Per2 and Ucn1 in the rat npEW are produced in a diurnal fashion, a phenomenon that may be relevant for the regulation of the diurnal rhythm in the stress response.  相似文献   

10.
探讨丰富环境干预对局部脑缺血大鼠突触界面结构修饰和突触后致密物-95 (postsynaptic density-95,PSD-95 ) mRNA表达的影响。栓塞健康雄性Sprague-Dawley大鼠的右侧大脑中动脉,建立脑中动脉栓塞(middle cerebral artery occlusion,MCAO)模型后,分为丰富环境缺血组(IE)、标准环境缺血组(IS),同时分别设丰富环境假手术组(SE)、标准环境假手术组(SS)。以Morris水迷宫检测大鼠的空间学习记忆能力,应用透射电镜、图像分析和细胞形态计量学技术,观察海马CA1区和额叶皮层突触界面结构变化,采用RT-PCR检测突触后脚手架蛋白PSD-95 mRNA的表达。结果表明:丰富环境干预能有效改善脑缺血导致的空间学习记忆能力下降,并对正常大鼠的空间学习记忆能力也有改善作用。同时,丰富环境干预能抑制局部脑缺血导致的突触数密度减少,该作用对额叶皮层特别明显;丰富环境干预不同程度地逆转脑缺血造成的突触界面参数变化,特别使突触间隙宽度显著减小、PSD厚度明显增加;并有效抑制因脑缺血诱导的PSD-95 mRNA表达下调。以上结果提示,丰富环境改善脑缺血大鼠的空间学习记忆能力可能与其促进缺血区边缘组织突触界面结构修饰,提高PSD-95 mRNA表达有关  相似文献   

11.
Rats of the Hatano high-avoidance (HAA) and low-avoidance (LAA) strains have been genetically selected on the basis of their two-way active avoidance behavior, and have different endocrine responses to stress. The present study focused on the adrenal steroid hormone responses of the Hatano strains and identifies differences in regulation of the adrenal cortex in vitro of HAA and LAA rats. Although incubation with prolactin (PRL) and/or adrenocorticotrophic hormone (ACTH) resulted in a dose-dependent increase of corticosterone and progesterone release by adrenal cells from both HAA and LAA male rats, the responses were markedly increased for adrenal cells from LAA rats as compared with HAA rats. This finding suggested that adrenal glands of HAA rats are less sensitive to PRL and/or ACTH than adrenals from LAA rats. Several possible intra-adrenal regulators were investigated. The basal level of expression of steroidogenic acute regulatory protein (StAR) and the long form of the PRL receptor (PRLR-L) mRNAs was higher in adrenals of LAA rats. ACTH treatment of adrenal cells from HAA rats resulted in statistically significant increases in melanocortin receptor 2 (MC2R) mRNA expression, while neither ACTH nor PRL altered MC2R mRNA expression in adrenal cells of LAA rats. Conversely, the increase in PRLR-L mRNA expression induced by PRL was observed only in adrenal cells from LAA rats. Treatment of adrenal cells with PRL and/or ACTH increased the expression of StAR and CYP11A1 mRNAs for both Hatano strains. However, the induction of StAR mRNA expression was higher in LAA rats, but the CYP11A1 response was lower. These findings indicate that adrenal cells of the LAA strain have higher sensitivity to secretagogues than those of the HAA strain. These results suggest that PRL may also be important in stimulating secretion of adrenal steroid hormones.  相似文献   

12.
In situ hybridization histochemistry was used to assess the effect of auditory stimulation with natural contact calls on expression of NR2A and NR2B NMDA subunit mRNAs in neurons of the thalamic auditory relay nucleus ovoidalis (Ov) of a vocal learning parrot species, the budgerigar (Melopsittacus undulatus). The results showed that both the core (Ov) and ventromedial shell subdivisions (Ovm) of ovoidalis contained neurons expressing NR2A and NR2B mRNA in no-stimulation control subjects and that the distributions of neurons expressing these subunit mRNAs were very similar in both the core and shell of Ov. Contact call stimulation (5, 30 and 180 min) resulted in substantial increases of 50-60% in the number of neurons expressing NR2A and NR2B mRNAs in both the core and shell. Staining intensity, as measured by the optical density of stained somata approximately doubled compared to controls for both NR2 subunits in the 5 and 30 min conditions, but declined from 30 to 180 min. In all conditions, the density, but not staining intensity, of neurons expressing NR2B exceeded NR2A expression. Furthermore, the density of neurons expressing both subunit mRNAs in call stimulation conditions was greater in the core than in the shell despite the fact that total neuronal density was approximately 20% higher in the shell. Previous experiments have shown that call stimulation is more effective at inducing expression of the immediate early gene zenk in the Ov shell than core; however the present results do not indicate that either NR2A or NR2B mRNA expression mediates this effect since neither subunit exhibits greater expression in Ovm. Ca(++) release is needed for immediate early gene expression, however and, notably, Ovm contains large numbers of neurons containing CGRP, a peptide which has been shown to increase cytosolic Ca(++) levels.  相似文献   

13.
The hypothesis that the noradrenergic projection from the locus coeruleus (LC) to the cerebral cortex and hippocampus is an important neural substrate for learning was evaluated. Maze performance was studied in rats receiving either electrolytic lesions of LC or 6-hydroxydopamine (6-OHDA) lesions of the dorsal tegmental noradrenergic projection. The LC lesions did not disrupt the acquisition of a running response for food reinforcement in an L-shaped runway, even though hippocampal-cortical norepinephrine (NE) was reduced to 29%. Greater telencephalic NE depletions (to 6% of control levels) produced by 6-OHDA also failed to disrupt the acquisition of this behavior or to impair the acquisition of a food-reinforced position habit in a T-maze. Neither locomotor activity nor habituation to a novel environment was affected by the 6-OHDA lesions. Rats with such lesions were, however, found to be significantly more distractible than were controls during the performance of a previously trained response. The hypothesis that telencephalic NE is of fundamental importance in learning was not supported. The data suggest that this system may participate in attentional mechanisms.  相似文献   

14.
The ventral noradrenergic bundle (VB) of the rate brain has been proposed as the substrate for the hyperphagia and obesity produced by ventromedial hypothalamic lesions. To determine the relationship between body weight and damage to the VB, the effects of bilateral electrolytic and 6-hydroxy-dopamine (6-OHDA) lesions of the VB were compared. When rats were fed only a standard laboratory diet, no significant differences were found between groups. When a high-fat diet supplement was introduced, the group with electrolytic lesions became significantly heavier than the control group; however, the 6-OHDA group did not differ from the controls. Norepinephrine depletion was significantly greater following the 6-OHDA than the electrolytic lesions. Both lesions reduced telencephalic dopamine and serotonin only slightly. A second study in which both types of lesions were placed at a rostral ventromedial hypothalamic site yielded the same pattern of results. Diet-dependent increases in body weight were attributed to the destruction of a non-noradrenergic system, which was spared by the relatively selective 6-OHDA lesion but damaged by the nonselective electrolytic lesion.  相似文献   

15.
We recently reported that male, but not female, offspring born to mothers exposed to social stress during late gestation show heightened anxiety-type behaviour in adulthood. The amygdala organises anxious behaviour, which involves actions of corticotropin-releasing hormone (CRH). CRH gene expression and/or its release are increased in the amygdala in prenatally stressed (PNS) rats. CRH type 1 receptor (CRH-R1) mediates actions of CRH and urocortin I to promote anxiety-like behaviour, whereas the CRH type 2 receptor (CRH-R2) may mediate anxiolytic actions, through actions of urocortins 2 and 3. Here, using quantitative in situ hybridisation, we investigated whether altered CRH receptor mRNA expression in the amygdaloid nuclei may explain the sex differences in anxiety behaviour in adult male and female PNS rats. CRH-R1 mRNA expression was significantly greater in the central amygdala and basolateral amygdala (BLA) in male PNS rats compared with controls, with no change in the basomedial amygdala (BMA) or medial amygdala (MeA). In PNS females, CRH-R1 mRNA expression was greater than controls only in the MeA. Conversely, CRH-R2 mRNA expression was significantly lower in the BMA of male PNS rats compared with controls, but greater in female PNS rats, with no change in the BLA or MeA in either sex. The ratio of CRH-R1:CRH-R2 mRNA in the amygdaloid nuclei was generally increased in PNS males, but not in the PNS females. In conclusion, sex differences in anxiety-type behaviour in PNS rats may be explained by differential mRNA expression for CRH-R1 (pro-anxiogenic) and CRH-R2 (pro-anxiolytic) in the amygdaloid complex.  相似文献   

16.
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT6 receptor in trained and untrained rats treated with the 5-HT6 receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT6 receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT6 receptor in the three structures examined. SB-399885 improved long-term memory at 48 h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24 h. Autoshaping training and treatment with SB-399885 increased 5-HT6 receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48 h. The scopolamine-induced amnesia suppressed 5-HT6 receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT6 receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT6 receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT6 receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.  相似文献   

17.
探讨右旋柠烯(D-L)对癫痫幼鼠海马星形胶质细胞胶质原纤维酸性蛋白(GFAP)的影响。利用尼氏染色及免疫组化技术观察匹罗卡品致癫痫的幼鼠经药物(左乙拉西坦、丙戊酸钠、D-L)治疗后星形胶质细胞形态学变化和GFAP的表达。尼氏染色显示药物治疗后幼鼠海马胶质神经元脱失较未治疗的幼鼠明显减轻;海马GFAP免疫阳性细胞数在药物治疗后的幼鼠较未治疗幼鼠明显减少(P〈O.05)。幼鼠癫痫发作可能与海马星形胶质细胞增生有关,D-L对发育期大鼠颞叶癫痫星形胶质细胞的增生及GFAP的表达似有抑制作用,推测D-L可能具有抗癫痫作用。  相似文献   

18.
Corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) play a central role in regulating the stress response. In response to stress, CRF and AVP neurons in the hypothalamic paraventricular nucleus secrete the peptides to stimulate the release of adrenocorticotropic hormone from the anterior pituitary. Ghrelin, an endogenous ligand of the growth hormone-releasing peptide receptors (GHSR), has been shown to stimulate the release of CRF and AVP by rat hypothalamic explants. However, little is known about the ability of the ghrelin signaling pathways to activate the CRF and AVP genes in the hypothalamus. In the present study, we examined the direct effect of ghrelin on CRF and AVP gene expression in hypothalamic 4B cells, which show the characteristics of the hypothalamic parvocellular paraventricular nucleus neurons. Cells were transfected with CRF or AVP promoter to examine the activity of each promoter. Ghrelin stimulated the promoter activities and mRNA levels for both CRF and AVP. The involvement of a protein kinase pathway was examined using inhibitors. Protein kinase A and phospholipase C pathways were shown to be involved in ghrelin-induced increases in both CRF and AVP promoter activities. GHSR type 1a (GHSR1a) mRNA levels were also increased by ghrelin, and these ghrelin-induced levels were suppressed by a GHSR1a antagonist. Thus, ghrelin-dependent pathways are involved in the regulation of CRF and AVP gene expression in the hypothalamus: ghrelin, an orexigenic hormone, stimulates CRF, an anorexigenic/anxiogenic factor in the hypothalamus, resulting in hypothalamic-pituitary-adrenal axis activation to stimulate the release of glucocorticoids.  相似文献   

19.
Corticotrophin-releasing hormone (CRH) plays a pivotal role in the suppression of the gonadotrophin-releasing hormone (GRH) pulse generator in response to stress and intracerebroventricular (i.c.v.) administration of calcitonin gene-related peptide (CGRP). We have previously shown both CRH receptor subtypes, CRH-R1 and CRH-R2, are involved in the stress-induced suppression of LH pulses. The aims of the present study were to examine the role of CRH-R1 and CRH-R2 in CGRP-induced suppression of LH pulses, and to investigate the effects of CGRP on CRH expression in the paraventricular nucleus (PVN) and central nucleus of the amygdala (CeA), which have prominent CRH neurone populations that receive dense CGRP innervations. The suppression of LH pulses by CGRP (1.5 microg i.c.v.) was completely prevented by intravenous administration of the CRH-R1 antagonist SSR125543Q (7.5 mg/rat i.v., 30 min before CGRP), but was not affected by the CRH-R2 antagonist, astressin(2)-B (100 microg i.c.v., 10 min before CGRP). CGRP increased the CRH mRNA expression in PVN and CeA. These results provide evidence of a role for CRH-R1 in mediating the suppressive effects of CGRP on pulsatile LH secretion in the female rat, and additionally raise the possibility of an involvement of PVN and CeA CRH neuronal populations in this suppression.  相似文献   

20.
朱熊兆  彭素芳  张晟  张逸  蔡琳 《心理学报》2012,44(3):330-337
为研究慢性温和应激诱导的抑郁大鼠纹状体内前列腺凋亡反应蛋白(prostate apoptosis response-4, par-4)的表达, 及甲基化是否参与par-4基因表达的调控, 将10周龄大鼠随机分为实验组和对照组, 实验组接受慢性温和应激, 对照组不接受实验性处理。于大鼠13周龄时, 采用强迫游泳、糖水偏爱测验测定大鼠的抑郁水平, 以实时定量PCR检测纹状体par-4及多巴胺D2受体(Dopamine receptor D2, DRD2) mRNA表达水平, 免疫印迹法检测纹状体par-4蛋白质表达水平, 用亚硫酸盐测序法检测par-4基因启动子区甲基化水平。结果发现, 与对照组大鼠相比, 实验组大鼠漂浮时间延长, 糖水偏爱率降低, 脑纹状体par-4、DRD2 mRNA及par-4蛋白质表达水平均降低, par-4基因启动子区甲基化水平两组差异不显著。提示慢性温和应激诱导大鼠产生了抑郁样行为, 并能抑制纹状体par-4基因的表达, 而基因甲基化可能并不参与其调控机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号