共查询到19条相似文献,搜索用时 46 毫秒
1.
陈晓平教授对塔斯基的"真"理论提出四点批评,并给出了使用"T′模式"作为真之定义的建议。但"T′模式"并不具有"内容恰当性"和"形式正确性",其引入的对"p"的摹状词解释比塔斯基的方案更复杂,对"真"进行递归定义在现有逻辑学内是不可能的。陈晓平教授对塔斯基"真"理论的批评和建议的失误之处在于误解塔斯基的原意、引入形而上学词项、需要新建形式逻辑。总之,其作为真之定义的"T′模式"是"不能允许地冗长"。 相似文献
2.
塔斯基首先提出关于真之定义的T模式即:"p"是真的,当且仅当,p。随后他又用X取代T模式中的"p",并且用"满足"来定义"真"。本文一方面根据"内容恰当性"要求,提出另一种模式T′即:"p"是真的,当且仅当,p是存在的;用以补充T模式,并完善塔斯基的语言层次论。另一方面根据"形式正确性"要求,指出塔斯基对T模式的这两项修改都是多余的。 相似文献
3.
塔斯基(Tarski)于1933年发表了他著名的真理定义,并相信该定义能够为其物理论的哲学立场服务;但费尔德(Field)批评说,塔斯基实际上所给出的真理定义并没能成功地达成这个目标。不过,费尔德同时也认为,一个部分奠基在塔斯基真理定义之上、并且是物理论者可以接受的化约性真理理论并非不可能。费尔德对于塔斯基真理定义的这些批评,在哲学家中曾经引起了许多意见不一的反应。本文的目的是想回答在这些讨论当中曾经被提出过的三个问题。首先,塔斯基实际上所给出的真理定义是不是一个物理论者可以接受的化约性定义?其次,费尔德所设想的那种可被物理论者所接受的化约性真理理论是否可能成功?最后,如果塔斯基实际上所给出的定义并不能符合物理论的化约目标,那么,一个物理论者是否便应该据此去反对塔斯基的真理定义?本文的最终结论是:这三个问题的正确答案都是否定的。 相似文献
4.
领域问题是对传统真理一元论的诘难,为解决领域问题,产生了紧缩论和多元论两种途径。谢尔的真理论就是一种多元真理论,她反对紧缩主义,认为“真”是一种实质属性,其核心属性为“符合”,但符合的方式是多样的,具体的符合方式是由不同领域的情况以及人们的认知能力决定的。谢尔以数学为例展示了一种多重符合的方式。她的理论为实质真理论提供了凭证,又改良了赖特和林奇理论的不足,合理地解释了“真”的统一性和多元性的关系。但也面临着理论依据不足、理论不完善以及很多传统符合论的遗留问题有待解决。 相似文献
5.
James O. Young 《Frontiers of Philosophy in China》2009,4(4):563-575
The central claim of this essay is that many deflationary theories of truth are variants of the correspondence theory of truth.
Essential to the correspondence theory of truth is the proposal that objective features of the world are the truthmakers of
statements. Many advocates of deflationary theories (including F. P. Ramsay, P. F. Strawson and Paul Horwich) remain committed
to this proposal. Although T-sentences (statements of the form “s is true iff p”) are presented by advocates of deflationary theories of truth as truisms or analytic truths, T-sentences are often understood
as entailing commitment to the central proposal of the correspondence theory. 相似文献
6.
功能主义真理论借助于功能的多重实现原理而达到一元真理论与多元真理论的统一。在应用“语义上溯”策略的同时应用“经验下沉”策略,把“真”概念的语义单义性与“事实”和“存在”等概念的经验多义性结合起来,在一定程度上达到收缩真理论与扩展真理论的统一。真的本质就是与事实符合。真命题所符合的事实归根结底是语言—实践共同体对该命题的接受。这种接受本身作为事实的客观性在于语言—实践共同体的主体间性,它的存在是一种功能,此功能的实现者是语言—实践共同体及其不可或缺的方法——渐近认定归纳法。这种把符合真理论与归纳方法结合起来的具有双重结构的真理论可称为“归纳—符合使真者理论”。 相似文献
7.
8.
9.
《哲学分析》2019,(5)
按照对"真"的结构分析,真理论可分为:内在论、符合论、融贯论和紧缩论。这四种方案各有其适用范围,但经过深入研究发现,除符合论以外的三种方案都存在棘手的难题。融贯论不能证成逻辑上的不矛盾律,不能合理地解决如何选择"支配性"信念系统的问题,并且它和内在论都不能解决偶然真问题。紧缩论的问题则是:若将"真"理解为提供一种认知担保,与其所主张的等值图式相结合,就可推出:信念p没有认知担保当且仅当非p有认知担保,这与实际情形不相符——关于p和非p,我们有可能都没有认知担保。为摆脱传统符合论的困境,可以通过列举"老生常谈"的方式,发展一种多元真理论:"真"在不同领域取决于不同的事物——在一个区域内取决于符合,在另一个领域内取决于融贯。"超可断定性"这一概念可以解释这种多元真理论的可行性。 相似文献
10.
在系统科学出现之前,格式塔心理在事物的整体性、同型论、非线性动力系统、顿悟说和现象学的透视方法等方面非常地接近系统科学了。格式塔的整体论思想非常的丰富,甚至可以看做是贝塔朗菲系统论的初级版本;格式塔的同型论思想初步给出了心物关系难题的回答,可以看做是协同论的一个雏形;格式塔的动力场论首先提出解决非线性动力结构的问题,为非线性思维的成长带来了动力;最后,格式塔心理学研究的现象学透视法、拓扑学与向量学方法的引入使我们看到,格式塔理论已经是一种接近成熟的系统科学思想了。 相似文献
11.
12.
13.
14.
Luciano Floridi 《Erkenntnis》2011,74(2):147-175
Semantic information is usually supposed to satisfy the veridicality thesis: p qualifies as semantic information only if p is true. However, what it means for semantic information to be true is often left implicit, with correspondentist interpretations
representing the most popular, default option. The article develops an alternative approach, namely a correctness theory of
truth (CTT) for semantic information. This is meant as a contribution not only to the philosophy of information but also to
the philosophical debate on the nature of truth. After the introduction, in Sect. 2, semantic information is shown to be translatable into propositional semantic information (i). In Sect. 3, i is polarised into a query (Q) and a result (R), qualified by a specific context, a level of abstraction and a purpose. This polarization is normalised in Sect. 4, where [Q + R] is transformed into a Boolean question and its relative yes/no answer [Q + A]. This completes the reduction of the truth of i to the correctness of A. In Sects. 5 and 6, it is argued that (1) A is the correct answer to Q if and only if (2) A correctly saturates Q by verifying and validating it (in the computer science’s sense of “verification” and “validation”); that (2) is the case if and only if (3) [Q + A] generates an adequate model (m) of the relevant system (s) identified by Q; that (3) is the case if and only if (4) m is a proxy of s (in the computer science’s sense of “proxy”) and (5) proximal access to m commutes with the distal access to s (in the category theory’s sense of “commutation”); and that (5) is the case if and only if (6) reading/writing (accessing, in the computer science’s technical sense of the term) m enables one to read/write (access) s. Sect. 7 provides some further clarifications about CTT, in the light of semantic paradoxes. Section 8 draws a general conclusion about the nature of CTT as a theory for systems designers not just systems users. In the course
of the article all technical expressions from computer science are explained. 相似文献
15.
The purpose of this paper is to show that the correspondence theory as a truth-maker theory has certain advantages over some of the other theories of truth. The cost of this advantage is postulating extra entities—facts. However, the benefits outweigh the costs; facts facilitate our understanding of the nature of truth made by the world. Facts are required for understanding this world; therefore, one cannot claim that a separate cost is incurred for explaining truth. It is further argued that because of specific reasons the correspondence theory can be treated even better than the truth-maker theory and so the recommendation for correspondence as the most efficient theory of truth.
相似文献16.
17.
Vassilios Karakostas 《Axiomathes》2014,24(3):343-358
The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either ‘true’ or ‘false’, describing what is actually the case at a certain moment of time. Truth-value assignment in quantum mechanics, however, differs; it is known, by means of a variety of ‘no go’ theorems, that it is not possible to assign definite truth values to all propositions pertaining to a quantum system without generating a Kochen–Specker contradiction. In this respect, the Bub–Clifton ‘uniqueness theorem’ is utilized for arguing that truth-value definiteness is consistently restored with respect to a determinate sublattice of propositions defined by the state of the quantum system concerned and a particular observable to be measured. An account of truth of contextual correspondence is thereby provided that is appropriate to the quantum domain of discourse. The conceptual implications of the resulting account are traced down and analyzed at length. In this light, the traditional conception of correspondence truth may be viewed as a species or as a limit case of the more generic proposed scheme of contextual correspondence when the non-explicit specification of a context of discourse poses no further consequences. 相似文献
18.