首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While bimanual interference effects can be observed when symbolic cues indicate the parameter values of simultaneous reaching movements, these effects disappear under conditions in which the target locations of two movements are cued directly. The present study investigates the generalizability of these target-location cuing benefits to conditions in which symbolic cues are used to indicate target locations (i.e., the end points of bimanual movements). Participants were asked to move to two of four possible target locations, being located either at the same and different distances (Experiment 1), or in the same and different directions (Experiment 2). Circles and crosses served as symbolic target-location cues and were arranged in a symmetric or non-symmetric fashion over the four target locations. Each trial was preceded by a variable precuing interval. Results revealed faster initiation times for equivalent as compared to non-equivalent target locations (same vs. different cues). Moreover, the time course of prepartion suggests that this effect is in fact due to target-equivalence and not to cue-similarity. Bimanual interference relative to movement parameter values was not observed. These findings suggest that cuing target locations can dominate potential intermanual interference effects during the concurrent programming of different movement parameter values.  相似文献   

2.
Structural constraints affect the coordination of bimanual movements in ways that have been taken to suggest that the specification of different movement amplitudes is subject to strong intermanual interference effects. Most experiments taken to support this notion, however, confounded variations of movement amplitudes with symmetry in starting locations and variations in target location. The present experiment was designed to further investigate the relative influence of the parameters starting location, movement amplitude, and target location on bimanual movement coordination. Participants performed simultaneous reaching movements with the left and right hand from same and different starting locations to same and different target locations. On each trial, two movements could match on none, one, or all of the parameters. We assessed the influence of each parameter by comparing conditions in which only a single parameter matched between the two hands with conditions in which all parameters differed. The reaction-time data revealed some challenging results for previous studies: (1) same starting locations significantly delayed movement initiation; (2) specifying movement amplitudes had virtually no effect on movement initiation, whereas (3) selecting same target locations significantly benefited the bimanual responses. These findings cannot be taken to support the notion that amplitude specification affects the initiation of bimanual movements. Rather, they support the notion that the initial starting locations of the two hands and the selection of target locations decide about the ease with which we perform bimanual reaching movements.  相似文献   

3.
The goal of the present investigation was to explore the possible expression of hemispheric-specific processing during the planning and execution of a bimanual reaching task. Participants (N = 9) completed 80 bimanual reaching movements (requiring simultaneous, bilateral production of arm movements) to peripherally presented targets while selectively attending to either their left or right hand. Further, targets were presented in spatially compatible (ipsilateral to the aiming limb) and incompatible (contralateral to the aiming limb) response contexts. It was found that the left hand exhibited temporal superiority over the right hand in the response planning phase of bimanual reaching, indicating a left hand/right hemisphere advantage in the preparation of a bimanual response. During response execution, and consistent with the view that interhemispheric processing time (Barthelemy & Boulinguez, 2002) or biomechanical constraints (Carey, Hargreaves, & Goodale, 1996) generate temporal delays, longer movement times were observed in response to spatially incompatible target positions. However, no hemisphere-specific benefit was demonstrated for response execution. Based on these findings, we propose lateralized processing is present at the time of response planning (i.e., left hand/right hemisphere processing advantage); however, lateralized specialization appears to be annulled during dynamic execution of a bimanual reaching task.  相似文献   

4.
The authors explored how trunk compensation and hand symmetry in stroke survivors and healthy controls were affected by the distance and height of virtual targets during a bimanual reaching task. Participants were asked to reach to 4 different virtual targets set at: 90% of their arm length at shoulder, xiphoid process, and knee height, and 50% of their arm length at xiphoid process height. For the stroke group, for all targets, the hands’ movements were more asymmetrical than those of the healthy group, with more asymmetry observed in the direction of gravity, and trunk forward displacement values were larger and more variable. The knee targets had the largest trunk displacement values; index of curvature and trunk displacement were strongly correlated with participants’ impairment scores. A strong correlation was found between the hands’ asymmetry in the anterior or posterior direction for the shoulder targets, and the impairment scores. The results suggest that target height influences the degree of trunk compensation and hand symmetry during bimanual reaching by hemiparetic participants.  相似文献   

5.
The present study investigates bimanual interference in a tool-use task, in which two target locations had to be touched concurrently with two tools, one for each hand. Target locations were either in the same, or in different directions for the two hands. Furthermore, the tools implemented either a compatible or an incompatible relationship between the direction of target locations and the direction of associated bodily movements. Results indicated bimanual interference when the tools had to be moved to targets in different directions. Furthermore, this interference was much more pronounced when the tools required body movements that were spatially incompatible to the cued target locations as compared to when they were compatible. These results show that incompatible relationships between target directions and bodily movement directions can aggravate bimanual interference in tool use.  相似文献   

6.
In two experiments, we studied intermanual interactions in bimanual reversal movements and bimanual aiming movements. Targets were presented on a monitor or directly on the table on which the movements were produced. Amplitudes for each hand were cued symbolically or spatially either in advance of an imperative signal or simultaneous with it. In contrast to findings of Diedrichsen et al. (Psychological Science, 12, 493–498, 2001), reaction times for different-amplitude movements were longer than for same-amplitude movements both for symbolic and spatial cues presented on the monitor and directly on the table. However, with symbolic cues the effect of the relation between target amplitudes was considerably stronger than with spatial cues, no matter where the cues were presented. Intermanual correlations of amplitudes, movement times, and reaction times were smaller with different than with same target amplitudes, and this modulation was more pronounced when targets and cues were presented on the monitor than when they were presented on the table. The findings are taken to suggest that the basic reaction-time disadvantage of different-amplitude movements results from interference between concurrent processes of amplitude specification. Additional factors like interference between concurrent processes of mapping cues on movement characteristics may add strongly to it.  相似文献   

7.
The authors examined the effects of perturbations in action goal on bimanual grasp posture planning. Sixteen participants simultaneously reached for 2 cylinders and placed either the left or the right end of the cylinders into targets. As soon as the participants began their reaching movements, a secondary stimulus was triggered, which indicated whether the intended action goal for the left or right hand had changed. Overall, the tendency for a single hand to select end-state comfort compliant grasp postures was higher for the nonperturbed condition compared to both the perturbed left and perturbed right conditions. Furthermore, participants were more likely to plan their movements to ensure end-state comfort for both hands during nonperturbed trials, than perturbed trials, especially object end-orientation conditions that required the adoption of at least one underhand grasp posture to satisfy bimanual end-state comfort. Results indicated that when the action goal of a single object was perturbed, participants attempted to reduce the cognitive costs associated with grasp posture replanning by maintaining the original grasp posture plan, and tolerating grasp postures that result in less controllable final postures.  相似文献   

8.
Interference is frequently observed during bimanual movements if the two hands perform nonsymmetric actions. We examined the source of bimanual interference in two experiments in which we compared conditions involving symmetric movements with conditions in which the movements were of different amplitudes or different directions. The target movements were cued either symbolically by letters or directly by the onset of the target locations. With symbolic cues, reaction times were longer when the movements of the two hands were not symmetric. With direct cues, reaction times were the same for symmetric and nonsymmetric movements. These results indicate that directly cued actions can be programmed in parallel for the two hands. Our results challenge the hypothesis that the cost to initiate nonsymmetric movements is due to spatial interference in a motor-programming stage. Rather, the cost appears to be caused by stimulus identification, response-selection processes connected to the processing of symbolic cues, or both.  相似文献   

9.
Executed bimanual movements are prepared slower when moving to symbolically different than when moving to symbolically same targets and when targets are mapped to target locations in a left/right fashion than when they are mapped in an inner/outer fashion [Weigelt et al. (Psychol Res 71:238–447, 2007)]. We investigated whether these cognitive bimanual coordination constraints are observable in motor imagery. Participants performed fast bimanual reaching movements from start to target buttons. Symbolic target similarity and mapping were manipulated. Participants performed four action conditions: one execution and three imagination conditions. In the latter they indicated starting, ending, or starting and ending of the movement. We measured movement preparation (RT), movement execution (MT) and the combined duration of movement preparation and execution (RTMT). In all action conditions RTs and MTs were longer in movements towards different targets than in movements towards same targets. Further, RTMTs were longer when targets were mapped to target locations in a left/right fashion than when they were mapped in an inner/outer fashion, again in all action conditions. RTMTs in imagination and execution were similar, apart from the imagination condition in which participants indicated the start and the end of the movement. Here MTs, but not RTs, were longer than in the execution condition. In conclusion, cognitive coordination constraints are present in the motor imagery of fast (<1600 ms) bimanual movements. Further, alternations between inhibition and execution may prolong the duration of motor imagery.  相似文献   

10.
When reaching for objects, people frequently look where they reach. This raises the question of whether the targets for the eye and hand in concurrent eye and hand movements are selected by a unitary attentional system or by independent mechanisms. We used the deployment of visual attention as an index of the selection of movement targets and asked observers to reach and look to either the same location or separate locations. Results show that during the preparation of coordinated movements, attention is allocated in parallel to the targets of a saccade and a reaching movement. Attentional allocations for the two movements interact synergistically when both are directed to a common goal. Delaying the eye movement delays the attentional shift to the saccade target while leaving attentional deployment to the reach target unaffected. Our findings demonstrate that attentional resources are allocated independently to the targets of eye and hand movements and suggest that the goals for these effectors are selected by separate attentional mechanisms.  相似文献   

11.
Investigations of bimanual movements have shed considerable insight on the constraints underlying our ability to perform coordinated actions. One prominent limitation is evident when people are required to produce reaching movements in which the two trajectories are of different amplitudes and/or directions. This effect, however, is only obtained when the movements are cued symbolically (e.g., letters indicate target locations); these planning costs are absent when the target locations are directly cued (J. Diedrichsen, E. Hazeltine, S. Kennerley, & R. B. Ivry, 2001). The present experiments test whether the absence of planning costs under the latter condition is due to the perceptual similarity of the direct cues. The results demonstrate that measures of response planning and execution do not depend on the perceptual similarity of the direct cues. Limitations in our ability to perform distinct actions with the two hands appear to reflect interactions related to response selection involving the translation of symbolic cues into their associated movements rather than arise from interactions associated with perception, motor programming, and motor execution.  相似文献   

12.
Reaching to targets in space requires the coordination of eye and hand movements. In two experiments, we recorded eye and hand kinematics to examine the role of gaze position at target onset on eye-hand coordination and reaching performance. Experiment 1 showed that with eyes and hand aligned on the same peripheral start location, time lags between eye and hand onsets were small and initiation times were substantially correlated, suggesting simultaneous control and tight eye-hand coupling. With eyes and hand departing from different start locations (gaze aligned with the center of the range of possible target positions), time lags between eye and hand onsets were large and initiation times were largely uncorrelated, suggesting independent control and decoupling of eye and hand movements. Furthermore, initial gaze position strongly mediated manual reaching performance indexed by increments in movement time as a function of target distance. Experiment 2 confirmed the impact of target foveation in modulating the effect of target distance on movement time. Our findings reveal the operation of an overarching, flexible neural control system that tunes the operation and cooperation of saccadic and manual control systems depending on where the eyes look at target onset.  相似文献   

13.
In 2 experiments, spatial error detection capability and movement accuracy were investigated in both single and bimanual rapid aiming movements. In both experiments, right-handed college-age participants (N = 40 [Experiment 1]; N = 24 [Experiment 2]) used light, aluminum levers to make quick single and dual reversal movements in the sagittal plane in a time to reversal of 210 ms to either the same or different target locations involving identical (Experiment 1) or mirror-image (Experiment 2) movements. In Experiment 1, the shorter-distance limb overshot the target by 15-23&percent; when paired with a limb traveling at least 20 degrees farther, but no spatial assimilations were shown when movements differed by 20 degrees or less. In Experiment 2, the shorter-distance limb overshot 22-29&percent; when paired with a limb traveling 20 degrees farther, but spatial assimilations were not mitigated when both limbs moved to the same target position. Participants underestimated movement amplitude in all dual conditions but particularly when spatial assimilations were noted. Correlations between actual and estimated errors decreased from single to dual trials in both experiments. The findings suggest that spatial assimilations are caused by bimanual differences in movement amplitude, regardless of movement direction, and that individuals have greater difficulty identifying errors in simultaneous actions, especially when spatial assimilations are present, than identifying errors in single-limb actions.  相似文献   

14.
Eliminating the cost of task set reconfiguration   总被引:5,自引:0,他引:5  
With insufficient time to fully prepare for a switch in task, a deterioration in performance on the first trial of a new task would be expected. The interest of researchers has been captured by the residual switch costs that, surprisingly, remain despite sufficient time to prepare. We used avery simple task to investigate the costs to reaction time and accuracy associated with changing between two different instructional sets every eight trials. Subjects responded to left and right visual targets by making either spatially compatible or incompatible eye movements (Experiment 1) or buttonpress responses (Experiment 2). The subjects were cued as to whether to make the compatible or the incompatible response by the color of a border appearing on the perimeter of the display. In cases in which the subject alternated between making pro- and antisaccades, the large costs to reaction time and accuracy at the short cue-target stimulus onset asynchrony were completely eliminated when sufficient time was provided to prepare for the switch. This complete elimination of residual switch costs was not obtained when the same alternation was applied to manual responses. This pattern of results links residual costs to response selection processes and suggests that they are not a necessary component of the switch process. We propose that the elimination of "stubborn" residual switch costs is rooted in our use of a hypercompatible task (making saccades toward targets) that places minimal demands on response selection.  相似文献   

15.
To examine the role of visual monitoring in the between-hand differences in skilled manual movements, eye movements and performance during bimanual aiming tasks were analysed. When subjects were required to make bimanual aiming responses to symmetrically placed targets, they preferentially monitored the movements of the right hand, resulting in better performance on the right hand. In addition, manipulation of the subject's gaze showed that the movements of the right hand were more influenced by visual monitoring than those of the left hand. The results were interpreted as showing that the between-hand differences in skilled movements are mainly due to the different efficiency in the use of visual monitoring.  相似文献   

16.
In 3 experiments, the authors investigated and described how individuals control manual interceptive movements to slowly moving targets. Participants (N = 8 in each experiment) used a computer mouse and a graphics tablet assembly to manually intercept targets moving across a computer screen toward a marked target zone. They moved the cursor so that it would arrive in the target zone simultaneously with the target. In Experiment 1, there was a range of target velocities, including some very slow targets. In Experiment 2, there were 2 movement distance conditions. Participants moved the cursor either the same distance as the target or twice as far. For both experiments, hand speed was found to be related to target speed, even for the very slowly moving targets and when the target-to-cursor distance ratios were altered, suggesting that participants may have used a strategy similar to tracking. To test that notion, in Experiment 3, the authors added a tracking task in which the participants tracked the target cursor into the target zone. Longer time was spent planning the interception movements; however, there was a longer time in deceleration for the tracking movements, suggesting that more visually guided trajectory updates were made in that condition. Thus, although participants scaled their interception movements to the cursor speed, they were using a different strategy than they used in tracking. It is proposed that during target interception, anticipatory mechanisms are used rather than the visual feedback mechanism used when tracking and when pointing to stationary targets.  相似文献   

17.
Simultaneous reaching movements made with the two hands can show a considerable increase in reaction time (RT) when they differ in terms of direction or extent, compared to when the movements involve the same direction and extent. This cost has been attributed to cross-talk in the specification of the motor parameters for the two hands. However, a recent study [Diedrichsen, Hazeltine, Kennerley, & Ivry, (2001). Psychological Science, 12, 493-498] indicates that when reaching movements are cued by the onset of the target endpoint, no compatibility effects are observed. To determine why directly cued movements are immune from interference, we varied the stimulus onset asynchrony for the two movements and used different combinations of directly cued and symbolically cued movements. In two experiments, compatibility effects were only observed when both movements were symbolically cued. No difference was found between compatible and incompatible movements when both movements were directly cued or when one was directly cued and the other was symbolically cued. These results indicate that interference is not related to the specification of movement parameters but instead emerges from processes associated with response selection. Moreover, the data suggest that cross-talk, when present, primarily shortens the RT of the second movement on compatible trials rather than lengthening this RT on incompatible trials.  相似文献   

18.
In Experiment 1, color-naming interference for target stimuli following associated primes was greater in a group making a lexical decision to the prime than in a group reading the prime silently. High-frequency targets were responded to more quickly than low-frequency targets. In Experiment 2, with subjects naming the prime, there was evidence of associative interference when the prime and the target were grouped temporally but not when the intertrial interval was comparable with the prime-target interval. Associative primes presented at a short (120-msec) prime-target stimulus onset asynchrony facilitated color naming in Experiment 3. Taken together, the results suggest that the effect of faster processing of the base word in a color-naming task is facilitatory and that color-naming priming interference arises when associative prime processing increases conflict between word and color responses by enhancing phonological or articulatory activation of the base word.  相似文献   

19.
Changes in interlimb coupling, and their role in the development of bimanual coordination, were studied longitudinally in 6- to 12-month-old infants (N = 6). Infants were observed while they were reaching for simple objects of 2 different sizes. Their use of a uni-versus bimanual strategy for reaching as well as the coupling of their bimanual movements were compared; progress in bimanual coordination of complementary movements was evaluated on 8 different bimanual tasks. The bimanual tasks involved an asymmetrical cooperation between the 2 hands. Although spatiotemporal coupling of bimanual reaching movements did not decrease during the age period studied, infants around 7 months of age used their 2 hands infrequently for reaching. Occurrences of bimanual reaching were particularly low at the session preceding the first bimanual success at a bimanual task. This suggests that the temporal coincidence between greater independence of the 2 hands and progress in bimanual coordination of complementary movements acts in 2 directions: Infants may be more at ease when using their 2 hands in differentiated patterns as the hands move less in synchrony, but, in turn, they may be less likely to move their hands in synchrony as the anticipate mirror manipulations of the object less. The frequency of bimanual reaches increased toward the end of the 1st year. This might have been caused by an increase in the repertoire of bimanual asymmetrical object manipulations and by the fact that the development of bimanual coordination allows infants to manipulate objects with complementary movements even after a bimanual approach toward the object.  相似文献   

20.
The influence of information-based dynamics on coordination dynamics of rhythmic movement was examined with special reference to the expression of asymmetries. In Experiment 1, right-handed subjects performed unimanual, rhythmical movements in coordination with either a discrete or continuous visual display. The right hand-visual display system defined a more stable perception-action collective than the left, particularly when continuous visual information was available. In Experiment 2, the same subjects performed rhythmic bimanual movements in coordination with a continuous visual display. The action collective was inherently more stable than the perception-action collective, although similar patterns were observed at both levels. Importantly, the dynamics of the perception-action collective impinged upon the dynamics of the action collective in terms of stability. Asymmetries remained evident between limbs in the bimanual preparations, with the left hand exhibiting greater limit-cycle variability and also a tendency to more often effect transitions at the action couple. Features of dynamical models that capture characteristics of manual asymmetries are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号