首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial stimulus-response (S-R) compatibility with unimanual two-finger choice reactions was investigated under conditions in which the spatial orientation of response keys was either parallel to or perpendicular to the orientation of the stimuli. Subjects responded to green or red lights in the left or right visual field (irrelevant stimulus location). The response keys were oriented horizontally on the left or right side of the body midline parallel to the stimuli, and were pressed with the palms facing down (Condition A), or were oriented orthogonally to the stimuli in the midsaggital plane, either horizontally and pressed with palms facing down (B) or facing up (C), or vertically and pressed with palms facing the body (D). The results for Condition A demonstrate the usual spatial S-R compatibility effect between field of stimulation and spatial position of responding finger. For Conditions B and D, a strong reaction time advantage still obtained for those stimulus-finger pairings that are compatible under Condition A. Condition C revealed an RT advantage for the opposite pairings. This shift of the compatibility effect from Condition B to Condition C indicates that the left/right distinction of fingers does not follow a simple, fixed spatio-anatomical mapping rule. The results are discussed within the framework of a hierarchical model of spatial S-R compatibility, with spatial coding and spatio-anatomical mapping as factors.  相似文献   

2.
Simon, Acosta, and Mewaldt (1975) reported an experiment in which a 200-Hz warning-tone, presented in the left or right ear, was followed by an imperative stimulus of 500 Hz in either ear, to which a left- or right-key press was to be made. Simon et al. found a correspondence effect for warning location and response location (i.e., faster reactions when warning and response locations corresponded than when they did not) when the stimulus-response mapping was incompatible but not when it was compatible. These findings stand in contrast to typical results of (1) a correspondence effect for irrelevant location information when the mapping is compatible and (2) a reversed correspondence effect (i.e., faster responses when stimulus and response location do not correspond) when the mapping is incompatible. We conducted a direct replication of Simon et al.’s experiment and another experiment that differed only in the imperative stimulus being visual, in order to determine whether there are unique aspects of their method that yield atypical results. Our results failed to replicate those reported by Simon et al. but instead showed the patterns of correspondence effects typically found with other procedures, suggesting that the warning-signal method produces irrelevant-location effects consistent with those produced by other methods.  相似文献   

3.
The Simon effect refers to the observation that responses to a relevant stimulus dimension are faster and more accurate when the stimulus and response spatially correspond than when they do not, even though stimulus position is irrelevant. Recent findings have suggested that the Simon effect can be strongly modulated by prior practice with a spatially incompatible mapping and by correspondence sequence. Although practice is thought to influence conditional stimulus —response (S-R) processing, leaving response priming through the unconditional route unaffected, sequential effects are thought to represent trial-by-trial adaptations that selectively involve unconditional S —R processing. In the present study, we tested this assumption by assessing the effects of correspondence sequence both when the Simon task alone was performed and when it was preceded by a spatial compatibility task with either incompatible (Experiments 1-2) or compatible (Experiment 2) instructions. The observation that practice and correspondence sequence co-occur and exert additive effects strongly demonstrates that the two factors affect different processing routes.  相似文献   

4.
Responses to a relevant stimulus dimension are faster and more accurate when the stimulus and response spatially correspond compared to when they do not, even though stimulus position is irrelevant (Simon effect). It has been demonstrated that practicing with an incompatible spatial stimulus-response (S-R) mapping before performing a Simon task can eliminate this effect. In the present study we assessed whether a learned spatially incompatible S-R mapping can be transferred to a nonspatial conflict task, hence supporting the view that transfer effects are due to acquisition of a general "respond to the opposite stimulus value" rule. To this aim, we ran two experiments in which participants performed a spatial compatibility task with either a compatible or an incompatible mapping and then transferred, after a 5 min delay, to a color Stroop task. In Experiment 1, responses were executed by pressing one of two keys on the keyboard in both practice and transfer tasks. In Experiment 2, responses were manual in the practice task and vocal in the transfer task. The spatially incompatible practice significantly reduced the color Stroop effect only when responses were manual in both tasks. These results suggest that during practice participants develop a response-selection strategy of emitting the alternative spatial response.  相似文献   

5.
Three experiments using a serial four-choice reaction-time (RT) task explored the interaction of sequence learning and stimulus-based response conflict. In Experiment 1, the spatial stimulus-response (S-R) mapping was manipulated between participants. Incompatible S-R mappings produced much higher RTs than the compatible mapping, but sequence learning decreased this S-R compatibility effect. In Experiment 2, the spatial stimulus feature was made task-irrelevant by assigning responses to symbols that were presented at unpredictable locations. The data indicated a Simon effect (i.e., increased RT when irrelevant stimulus location is spatially incompatible with response location) that was reduced by sequence learning. However, this effect was observed only in participants who developed an explicit sequence representation. Experiment 3 replicated this learning-based modulation of the Simon effect using explicit sequence-learning instructions. Taken together, the data support the notion that explicit sequence learning can lead to motor 'chunking', so that pre-planned response sequences are shielded from conflicting stimulus information.  相似文献   

6.
When left and right keypresses are made to stimuli in left and right locations, and stimulus location is irrelevant to the task, responses are typically faster when stimulus location corresponds with response location than when it does not (the Simon effect). This effect reverses when the relevant stimulus-response mapping is incompatible, with responses being slower when stimulus and response locations correspond (the Hedge and Marsh reversal). Simon et al. (Acta Psychol. 47 (1981) 63) reported an exception to the Hedge and Marsh reversal for a situation in which the relevant stimulus dimension was the color of a centered visual stimulus and the irrelevant location information was left or right tone location. In contrast, similar experiments have found a reversal of the Simon effect for tone location when relevant visual locations were mapped incompatibly to responses. We conducted four experiments to investigate this discrepancy. Both results were replicated. With an incompatible mapping, irrelevant tone location showed a small reverse Simon effect when the relevant visual dimension was physical location but not when the color of a centered stimulus or the direction in which an arrow pointed conveyed the visual location information. The reversal occurred in a more standard Hedge and Marsh task in which the irrelevant dimension was location of the colored stimulus, but only when the response keys were visibly labeled. Several of the results suggest that display-control arrangement correspondence is the primary cause of the Hedge and Marsh reversal, with logical recoding playing only a secondary role.  相似文献   

7.
Abstract

Stimulus—response (S-R) compatibility was a tem fmt used by Wtts and Seeger (1953) to describe effcts observed on reaction time (RT) when the stimulus—response relationship was varied, as in the following instructions: “move to tbe right when the stimulus appears on the right” (compatible) or “move to the left when the stimulus appears on the right” (incompatible). This term was later employed in a broader sense (Simon & Rudell, 1967) with paradigms involving elaborate stimuli, such as the verbal command ‘RIGHT’ delivered to the right tar (compatible) or to the left ear (incompatible). In such paradigms. subjects respond faster when the response is delivered on the same side as the stimulus (the so-called “Simon effect”). It has been shown, however, that this effect could be reversed under some circumstanas in the visual domain. In this paper, we report data showing that it can also be reversed in the auditory domain when using the above-mentioned verbal commands. This brings further evidence that stimulus-response compatibility and the Simon effect difier in essence, with the latter effect reflecting the influence of stimulus congruence, the correspondence relationship borne by the two simultaneous characteristics of the stimulus. Stimulus congruence and stimulus-response compatibility had indeed independent influences on RT, which in a serially connected information-processing modcl would imply that they act upon independent stages.  相似文献   

8.
A non-spatial variant of the Simon effect for the stimulus-response (S-R) feature of duration is reported. In Experiment 1 subjects were required to press a single response key either briefly or longer in response to the colour of a visual stimulus that varied in its presentation duration. Short keypresses were initiated faster with short than with long stimulus duration whereas the inverse was observed with long keypresses. In Experiment 2 subjects were required to press a left or right key (according to stimulus form) either briefly or longer (according to stimulus colour). The stimuli concurrently varied in their location (left or right) and duration (short or long), which were both task irrelevant. Approximately additive correspondence effects for S-R location and S-R duration were observed. To summarize, the results suggest that the irrelevant stimulus features of location and duration are processed automatically and prime corresponding responses in an independent manner.  相似文献   

9.
When up-down stimulus locations are mapped to left-right keypresses, an overall advantage for the up-right/down-left mapping is often obtained that varies as a function of response eccentricity. This orthogonal stimulus-response compatibility (SRC) effect also occurs when stimulus location is irrelevant, a phenomenon called the orthogonal Simon effect, and has been attributed to correspondence of stimulus and response code polarities. The Simon effect for horizontal stimulus-response (S-R) arrangements has been shown to be affected by short-term S-R associations established through the mapping used for a prior SRC task in which stimulus location was relevant. We examined whether such associations also transfer between orthogonal SRC and Simon tasks and whether correspondence of code polarities continues to contribute to performance in the Simon task. In Experiment 1, the orthogonal Simon effect was larger after practising with an up-right/down-left mapping of visual stimuli to responses than with the alternative mapping, for which the orthogonal Simon effect tended to reverse. Experiment 2 showed similar results when practice was with high (up) and low (down) pitch tones, though the influence of practice mapping was not as large as that in Experiment 1, implying that the short-term S-R associations acquired in practice are at least in part not modality specific. In Experiment 3, response eccentricity and practice mapping were shown to have separate influences on the orthogonal Simon effect, as expected if both code polarity and acquired S-R associations contribute to performance.  相似文献   

10.
Left or right keypresses to a relevant stimulus dimension are faster when the stimulus location, although irrelevant, corresponds with that of the response than when it does not. This phenomenon, called the Simon effect, persisted across 1,800 trials of practice, although its magnitude was reduced. Practice with the relevant stimulus dimension presented at a centered location had little influence on the magnitude of the Simon effect when irrelevant location was varied subsequently, and practice with location irrelevant prior to performing with location relevant slowed responses. After practice responding to stimulus location with an incompatible spatial mapping, the Simon effect was reversed (i.e., responses were slower when stimulus location corresponded with response location) when location was made irrelevant. When the response keys were labeled according to the relevant stimulus dimension (the Hedge and Marsh [1975] task variation), this reversal from practice with a spatially incompatible mapping was found for both the congruent and the incongruent relevant stimulus-response mappings. Thus, task-defined associations between stimulus location and response location affect performance when location is changed from relevant to irrelevant, apparently through producing automatic activation of the previously associated response.  相似文献   

11.
In two-choice tasks, the compatible mapping of left stimulus to left response and right stimulus to right response typically yields better performance than does the incompatible mapping. Nonetheless, when compatible and incompatible mappings are mixed within a block of trials, the spatial compatibility effect is eliminated. Two experiments evaluated whether the elimination of compatibility effects by mixing compatible and incompatible mappings is a general or specific phenomenon. Left-right physical locations, arrow directions, and location words were mapped to keypress responses in Experiment 1 and vocal responses in Experiment 2. With keypresses, mixing compatible and incompatible mappings eliminated the compatibility effect for physical locations and arrow directions, but enhanced it for words. With vocal responses, mixing significantly reduced the compatibility effect only for words. Overall, the mixing effects suggest that elimination or reduction of compatibility effects occurs primarily when the stimulus-response sets have both conceptual and perceptual similarity. This elimination may be due to suppression of a direct response-selection route, but to account for the full pattern of mixing effects it is also necessary to consider changes in an indirect response-selection route and the temporal activation properties of different stimulus-response sets.  相似文献   

12.
The classic problem of stimulus-response (S-R) compatibility (SRC) is addressed. A cognitive model is proposed that views the stimulus and response sets in S-R ensembles as categories with dimensions that may or may not overlap. If they do overlap, the task may be compatible or incompatible, depending on the assigned S-R mapping. If they do not overlap, the task is noncompatible regardless of the assigned mapping. The overlapping dimensions may be relevant or not. The model provides a systematic account of SRC effects, a taxonomy of simple performance tasks that were hitherto thought to be unrelated, and suggestive parallels between these tasks and the experimental paradigms that have traditionally been used to study attentional, controlled, and automatic processes.  相似文献   

13.
Two experiments examined effects of mixed stimulus-response mappings and tasks for older and younger adults. In Experiment 1, participants performed two-choice spatial reaction tasks with blocks of pure and mixed compatible and incompatible mappings. In Experiment 2, a compatible or incompatible mapping was mixed with a Simon task for which the mapping of stimulus color to location was relevant and stimulus location was irrelevant. In both experiments, older adults showed larger mixing costs than younger adults and larger compatibility effects, with the differences particularly pronounced in Experiment 1 when location mappings were mixed. In mixed conditions, when stimulus location was relevant, older adults benefited more than younger adults from complete repetition of the task and stimulus from the preceding trial. When stimulus location was irrelevant, the benefit of complete repetition did not differ reliably between age groups. The results suggest that the age-related deficit associated with mixing mappings and tasks is primarily due to older adults having more difficulty separating task sets that activate conflicting response codes.  相似文献   

14.
A spatial compatibility effect (SCE) is typically observed in forced two-choice tasks in which a spatially defined response (e.g., pressing a left vs. a right key) has to be executed to a nonspatial feature of a stimulus (e.g., discriminating red from green) that is additionally connoted by a spatial feature (e.g., the stimulus points to the left or the right). Responses are faster and more accurate when the response side and the spatial stimulus feature are compatible than when they are incompatible. Previous research has demonstrated that SCEs are diminished when stimuli from only one response category are responded to in individual go/no-go tasks, whereas SCEs reemerge when two participants work jointly on two complementary, individual go/no-go tasks in a joint go/no-go task setting. This social Simon effect has been considered evidence for shared task representations. We show that SCEs emerge in individual go/no-go tasks when the spatial dimension is made more salient, whereas SCEs are eliminated in joint go/no-go tasks when the spatial dimension is made less salient. These findings are consistent with an account of social Simon effects in terms of spatial response coding, whereas they are inconsistent with an account of shared task representations. The relevance of social factors for spatial response coding is discussed.  相似文献   

15.
Four choice reaction time experiments documented a stimulus-response (S-R) compatibility effect involving the numbers of stimuli and responses. In Experiment 1, the stimulus consisted of one or two tones, and the correct response was either one or two taps of a response key. Responses were much faster with a compatible S-R assignment, in which the number of taps matched the number of tones, than with an incompatible assignment in which these numbers mismatched. Experiments 2 and 3 replicated this effect, using visual stimuli and bimodal stimuli, respectively, suggesting that auditory/manual rhythmic compatibility is not essential to it. Experiment 4 showed that an analogous but smaller effect is obtained when stimuli are the digits 1 and 2. This new numerosity-based compatibility effect has general theoretical implications regarding the mechanisms responsible for compatibility effects and practical implications for interface design.  相似文献   

16.
The present study investigated the conditions for observing the Simon effect in go/no-go tasks. The Simon effect denotes faster and more accurate responses when irrelevant stimulus location and response location correspond than when they do not correspond. In four experiments, participants performed both in a choice-response task (CRT) and in a go/no-go task, and we varied the order and the similarity of the tasks. In the CRT, participants pressed a left key to one stimulus colour and a right key to another stimulus colour; in the go/no-go task, participants pressed one (e.g., left) key to one stimulus colour and refrained from responding to the other stimulus colour. As expected, Simon effects were consistently observed in the CRT. In contrast, Simon effects in the go/no-go task were only observed when it followed the CRT and when the mapping of stimulus colours to response locations was preserved between tasks (i.e., in Experiment 4). Results suggest that transfer of a particular S–R rule including response location from the CRT to the go/no-go task was responsible for the Simon effect in the latter task. In general, results are consistent with a response-discrimination account of the Simon effect.  相似文献   

17.
Responses are faster with spatial S-R correspondence than with noncorrespondence (spatial compatibility effect), even if stimulus location is irrelevant (Simon effect). In two experiments, we sought to determine whether stimuli located above and below a fixation point are coded as left and right (and thus affect the selection of left and right responses) if the visual context suggests such a coding. So, stimuli appeared on the left or right eye of a face’s image that was tilted by 90° to one side or the other (Experiment 1) or varied between upright and 45° or 90° tilting (Experiment 2). Whether stimulus location was relevant (Experiment 1) or not (Experiment 2), responses were faster with correspondence of (face-based) stimulus location and (egocentrically defined) response location, even if stimulus and response locations varied on physically orthogonal dimensions. This suggests that object-based spatial stimulus codes are formed automatically and thus influence the speed of response selection.  相似文献   

18.
When lateralized responses are made to the locations of vertically arrayed stimuli, two types of mapping effect have been reported: an overall up–right/down–left advantage and mapping preferences that vary with response position. According to Cho and Proctor's (2003) multiple asymmetric codes account, these orthogonal stimulus–response compatibility effects are due to the correspondence of stimulus polarity and response polarity, as determined by the positions relative to multiple frames of reference. The present study examined these two types of orthogonal compatibility for situations in which participants made left–right responses to the colours of a vertically arrayed stimulus set, and stimulus location was irrelevant. Although a significant orthogonal Simon effect was not evident when responding at a centred, neutral response position, the effect was modulated by response eccentricity (Experiment 2) and hand posture (Experiment 3). These effects are qualitatively similar to those obtained when stimulus location is task relevant. The results imply that, as Proctor and Cho's (2006) polarity correspondence principle suggests, the stimulus polarity code activates the response code of corresponding polarity even when stimulus location is irrelevant to the task.  相似文献   

19.
When compatible and incompatible mappings of a location-relevant task are mixed, or a location-relevant task is mixed with a task for which stimulus location is irrelevant, the benefit of the compatible mapping is eliminated for physical locations and enhanced for location words. Two experiments examined the influence of presenting the location information for the mixed conditions in different stimulus modes (physical location or word). Experiment 1 showed that the effects of mixing location-relevant and location-irrelevant tasks on the spatial compatibility and Simon effects are reduced when the location information is presented in different modes for the two tasks. Experiment 2 showed, in contrast, that the mode distinction had little influence on the effects of mixed compatible and incompatible mappings for location-relevant tasks: The compatibility effect was eliminated for physical locations and enhanced for words, as when there is no mode distinction. Thus, when location is relevant for one task and colour for the other, the task-defined associations of locations to responses are mode specific, but when location is relevant for both tasks, the associations are mode independent.  相似文献   

20.
When compatible and incompatible mappings of a location-relevant task are mixed, or a location-relevant task is mixed with a task for which stimulus location is irrelevant, the benefit of the compatible mapping is eliminated for physical locations and enhanced for location words. Two experiments examined the influence of presenting the location information for the mixed conditions in different stimulus modes (physical location or word). Experiment 1 showed that the effects of mixing location-relevant and location-irrelevant tasks on the spatial compatibility and Simon effects are reduced when the location information is presented in different modes for the two tasks. Experiment 2 showed, in contrast, that the mode distinction had little influence on the effects of mixed compatible and incompatible mappings for location-relevant tasks: The compatibility effect was eliminated for physical locations and enhanced for words, as when there is no mode distinction. Thus, when location is relevant for one task and colour for the other, the task-defined associations of locations to responses are mode specific, but when location is relevant for both tasks, the associations are mode independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号