首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coordinated control of eye and hand movements in dynamic reaching   总被引:3,自引:0,他引:3  
In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing conditions. In the adapted pointing condition, subjects had to direct both their gaze and arm movements to a displaced target location. The results showed that the eyes could fixate the new target during pointing. In addition, a temporal coupling of these corrective saccades was found with changes in arm movement trajectories when reaching to the new target. In the sustained pointing condition, however, the same subjects had to point to the initial target, while trying to deviate their gaze to a new target that appeared during pointing. It was found that the eyes could not fixate the new target before the hand reached the initial target location. Together, the results indicate that ocular gaze is always forced to follow the target intended by a manual arm movement. A neural mechanism is proposed that couples ocular gaze to the target of an arm movement. Specifically, the mechanism includes a reach neuron layer besides the well-known saccadic layer in the primate superior colliculus. Such a tight, sub-cortical coupling of ocular gaze to the target of a reaching movement can explain the contrasting behavior of the eyes in dependency of whether the eye and hand share the same target position or attempt to move to different locations.  相似文献   

2.
Mechanical parameters of the effector system directly after the termination of fast goal-directed arm movements were studied.Subjects were asked to move their hand as fast as possible to a target the instant the target was presented. Only movements of the subjects' forearms were allowed. They were also instructed not to react actively to forces applied suddenly to their forearm after the movement. As a result of such a force pulse the arm moved to a new position. The apparent stiffness, i.e. the quotient of the applied force and the resultant change of position, was measured. This stiffness is a measure for the resistance of the forearm to externally applied mechanical disturbances.It was found that after the arm has reached the target the apparent stiffness decreases as a function of time. This is an agreement with the declining amplitude of the electromyographic activity of the muscles that effect the movement.Arguments are given to support the hypothesis that this apparent stiffness control is part of the motor programme for movements of the forearm, i.e. the stiffness is planned together with the movement.  相似文献   

3.
The authors investigated the use of visual feedback as a form of knowledge of results (KR) for the control of rapid (200-250 ms) reaching movements in 40 participants. They compared endpoint accuracy and intraindividual variability of a full-vision group (FV) with those of no-vision groups provided with KR regarding (a) the endpoint in numerical form, (b) the endpoint in visual form, or (c) the endpoint and the trajectory in visual form (DEL). The FV group was more accurate and less variable than were the no-vision groups, and the analysis of limb trajectory variability indicated that their superior performance resulted primarily from better movement planning rather than from online visual processes. The FV group outperformed the DEL group even though both groups were obtaining the same amount of spatial visual information from every movement. That finding suggests that the effectiveness with which visual feedback is processed offline is not a simple function of the amount of visual information available, but depends on how that information is presented.  相似文献   

4.
Converging behavioral findings support recent models of motor control suggesting that estimates of the future positions of a limb as well as the expected sensory consequences of a planned movement may be derived, in part, from efference copies of motor commands. These estimates are referred to as forward models. However, relatively little behavioral evidence has been obtained for proposed forward models that provide on-line estimates of current position. We report data from a patient (JD) who reached accurately to visualized targets with and without vision of her hand despite substantial proprioceptive loss. Additionally, we administered a double-start reaching test to examine the possibility that efference copy information could be used to estimate current limb position. JD reached accurately, without vision, to a final target after actively reaching to a landmark, but exhibited severely impaired reaching after passive movements to the landmark. This finding suggests that forward modeling of efference copy signals may provide relatively accurate estimates of current limb position for the purpose of motor planning. The possibility that such estimates may also contribute to the awareness of body position and to self-recognition is discussed.  相似文献   

5.
We have identified a fundamental property of human motor behavior as a tight coupling of the curvature-speed relationship in the reaching movements of 5- to 9-month-old infants. This relationship termed a movement unit, occurs regardless of the distance of duration of the reach and in spite of the developmental change that occurs in grasping during this period. Movement unit durations are tightly clustered around 200 ms regardless of overall duration or distance or the position of the unit in the reach. The curvature-speed coupling has been identified by others in adult reaching and handwriting. Models of biological motor control must account for this invariant relationship.  相似文献   

6.
While bimanual interference effects can be observed when symbolic cues indicate the parameter values of simultaneous reaching movements, these effects disappear under conditions in which the target locations of two movements are cued directly. The present study investigates the generalizability of these target-location cuing benefits to conditions in which symbolic cues are used to indicate target locations (i.e., the end points of bimanual movements). Participants were asked to move to two of four possible target locations, being located either at the same and different distances (Experiment 1), or in the same and different directions (Experiment 2). Circles and crosses served as symbolic target-location cues and were arranged in a symmetric or non-symmetric fashion over the four target locations. Each trial was preceded by a variable precuing interval. Results revealed faster initiation times for equivalent as compared to non-equivalent target locations (same vs. different cues). Moreover, the time course of prepartion suggests that this effect is in fact due to target-equivalence and not to cue-similarity. Bimanual interference relative to movement parameter values was not observed. These findings suggest that cuing target locations can dominate potential intermanual interference effects during the concurrent programming of different movement parameter values.  相似文献   

7.
8.
Transport of the hand towards an object and the formation of grasp are logically separable components of reaching. It has been suggested that, although the two components must be temporally co-ordinated, their spatial parameters are under the control of independent visuo-motor channels. A case study of reaching by a proficient user of a manually-operated artificial hand is presented. A pattern of natural hand usage was observed in which the index finger rather than the thumb was responsible for reduction of grasp aperture as the hand approached an object. The same pattern of usage was also observed in the artificial hand even though the mechanics of that hand make it no easier to move the finger than the thumb. This suggests that the relative stability of the thumb in the natural hand is determined, not simply by anatomy, but by a role in guiding the transport component of reaching. At least part of the spatial aspect of grasp formation is closely related to the transport component of reaching and this is evidence against theories postulating two independent visuo-motor channels controlling the spatial parameters of grasp and transport.  相似文献   

9.
Structuring of early reaching movements: a longitudinal study   总被引:1,自引:0,他引:1  
Reaches, performed by 5 infants, recorded at 19 weeks of age and every third week thereafter until 31 weeks of age, were studied quantitatively. Earlier findings about action units were confirmed. At all ages studied, movements were structured into phases of acceleration and deceleration. Reaching trajectories were found to be relatively straight within these units and to change direction between them. It was also found that at all ages, there was generally one dominating transport unit in each reach. The structuring of reaching movements changed in four important ways during the period studied. First, the sequential structuring became more systematic with age, with the dominating transport unit beginning the movement. Second, the duration of the transport unit became longer and covered a larger proportion of the approach. Third, the number of action units decreased with age, approaching the two-phase structure of adult reaching. Finally, reaching trajectories became straighter with age.  相似文献   

10.
We tested the hypothesis that a highly accurate target representation is available to the visuomotor system in brief (< 2 s) delay conditions. Participants reached to single midsagittal targets (20, 25, 30, 35, 40 cm amplitude) in full vision, open-loop and delay conditions (500, 1,000, 1,500 or 2,000 ms). Radial endpoint error was significantly greater for open-loop than full vision reaches, and was greater still for all delay conditions, which did not differ from one another. Radial error was greater for farther targets, although this tended to hold only for delayed reaches. These data suggest that the visuomotor system switches from on-line visual information to a degraded, stored representation very soon (< 500 ms) if not immediately after target occlusion.  相似文献   

11.
A major line of behavioral support for motor-program theory derives from evidence indicating that feedback does not influence the execution and control of limited duration movements. Since feedback cannot be utilized, the motor-program is assumed to act as the controlling agent. in a classic study, Keele and Posner observed that visual feedback had no effect on the accuracy of 190-msec single-aiming movements. Therefore visual feedback processing time is greater than 190 msec, and, more importantly, limited duration movements are governed by motor programs. In the present paper, we observed that visual feedback can affect the spatial accuracy of movement with durations much less than 190 msec. We hypothesize that visual feedback can aid motor control via processes not associated with intermittent error corrections.  相似文献   

12.
Many studies have demonstrated that the seated position is more effective in promoting reaching movements when compared with supine. The aim of this longitudinal study was to verify the effect of seated and supine positions on spatio-temporal parameters of reaching in 4-6-month-old infants. Four infants were observed during reaching trials in both positions. A total of 235 reaches were analyzed by using the 3D movement reconstruction. Our results showed that frequency of reaching and straightness index increased over age. Significant differences between the positions were observed at 4 months, when the frequency increased and the duration and deceleration time decreased in the seated position. There were no significant differences at 5 and 6 months. These findings suggest that young infants are able to change kinematical parameters of reaching to adapt themselves to intrinsic and extrinsic constraints (i.e. age and position).  相似文献   

13.
The dynamic limitations of eye movement recorders can distort the measurement of fast eye movements such as saccades and nystagmic quick phases. In this paper, the effects of the bandwidth and noise of recording methods and the problems incurred by digital sampling are discussed theoretically with respect to the measurement of peak velocity and duration of fast eye movements. As a practical example, a TV-based infrared corneal reflex system is examined and a method for calibrating it for peak velocity measurement is described.  相似文献   

14.
In target-directed aiming, afferent information is used to adjust limb trajectories during movement execution (i.e. online) and to enhance the programming of subsequent trials (i.e. offline). The objective of the present study was to determine the influence of state anxiety on both online and offline afferent information processing for the first time. Participants practiced either a directional aiming task (Experiment 1) or an amplitude aiming task (Experiment 2) without anxiety before being transferred to a high anxiety condition. In both experiments, results revealed that anxiety resulted in a decrement in performance. Furthermore, use of afferent information to adjust movement trajectories online was disrupted when movements were performed with anxiety, whereas there were no differences in the offline processing of afferent information between the low anxiety and high anxiety conditions.  相似文献   

15.
The purpose of this study was to assess the effects of objects with different attributes on motor control in the act of reaching for them. Much about reaching has been studied from the point of view of spatial relations between objects and subjects, and kinematic approaches have played an important role in this field. Recently, some researchers have proposed that factors other than spatial relations characterize reaching. Therefore, we focused on reaching for an empty glass (empty condition) and a water-filled glass (filled condition) where the positions of the glasses were the same to examine the importance of the objects when reaching for them. Eight young adults participated. We translated the position of the index finger into X-Y-Z coordinate values and examined movement time, length of trajectory, and velocity between the empty and filled conditions. It took longer to reach for an empty than a filled glass, and the filled condition showed a longer trajectory and slower velocity than the empty condition. This indicated that objects with different attributes influenced the reaching and that the role of cognition of attributes is important in the act of reaching.  相似文献   

16.
The purpose of this study was to investigate the influence of contingent auditory feedback on the development of infant reaching. Eleven full-term infants were observed biweekly from the age of 10 weeks to 16 weeks, and their arm kinematics were recorded. Auditory feedback that was contingent on arm kinematics was provided in the form of: (a) the mother's voice; and (b) musical tones. Results showed that providing auditory feedback (mother's voice or musical tones): (i) increased the amplitude of exploratory arm movements before the onset of reaching; and (ii) increased the number of reaches at the onset of reaching. These results show that infants are able to use contingent auditory feedback to explore the relevant possibilities for action that are subsequently shaped into goal-directed movements.  相似文献   

17.
In virtual reality it is easy to control the visual cues that tell us about an object's shape. However, it is much harder to provide realistic virtual haptic feedback when grasping virtual objects. In this study we examined the role of haptic feedback when grasping (virtual) cylinders with an elliptical circumference. In Experiment 1 we placed the same circular cylinder at the simulated location of virtual elliptical cylinders of varying shape, so that the haptic feedback did not change when the visually specified shape changed. We found that the scaling of maximum grip aperture with the diameter of the nearest principal axis (.14+/-.04) was much weaker than when grasping real cylinders (.54+/-.04, Cuijpers, Brenner, & Smeets, 2006 Grasping reveals visual misjudgements of shape. Experimental Brain Research, 175, 32-44). For the scaling of grip orientation with the orientation of the cylinder we found large individual differences: the range is .07-.82 (average .42+/-.07) as compared to .55-.79 (average .67+/-.03) for grasping real cylinders. In Experiment 2 we provided consistent haptic feedback by placing real cylinders that matched the location, shape and orientation of the virtual cylinders. The scaling gains of both maximum grip aperture (.39+/-.04) and grip orientation (.56+/-.08) were substantially higher than in Experiment 1, but still lower than for grasps to real cylinders. The variability between participants for the scaling of grip orientation was also much reduced. These results showed that although haptic feedback must be consistent with visual information, it is not sufficient for natural prehension. We discuss the implications of these findings in terms of the integration of visual information with haptic feedback.  相似文献   

18.
The accuracy of reaching movements improves when active gaze can be used to fixate on targets. The advantage of free gaze has been attributed to the use of ocular proprioception or efference signals for online control. The time course of this process, however, is not established, and it is unclear how far in advance gaze can move and still be used to parameterize subsequent movements. In this experiment, the authors considered the advantage of prescanning targets for both pointing and reaching movements. The authors manipulated the visual information and examined the extent to which prescanning of targets could compensate for a reduction in online visual feedback. In comparison with a conventional reaching/pointing condition, the error in pointing was reduced, the eye-hand lead decreased, and both the hand-closure time and the size of the maximum grip aperture in reaching were modulated when prescanning was allowed. These results indicate that briefly prescanning multiple targets just prior to the movement allows the refinement of subsequent hand movements that yields an improvement in accuracy. This study therefore provides additional evidence that the coordinate information arising from efference or ocular-proprioceptive signals can, for a limited period, be buffered and later used to generate a sequence of movements.  相似文献   

19.
The reported resolution of timing the moment of impact in fast human movements differs widely depending on the task. Surprisingly, better timing is reported for the demanding task of batting a ball than for the much simpler task of tapping in synchrony with two hands. We wondered whether this is because a sizeable part of timing variability arises from misjudging the distance in the direction of one's own movement, so that moving faster (as the bat does when moving toward a ball) improves timing. We found that moving faster does indeed improve timing in both the above-mentioned tasks. After removing the proposed contribution of misjudging the distance in the direction of one's own movement, we estimated that the remaining standard deviation in timing is just over 6ms for both tasks.  相似文献   

20.
This study describes a method of modeling human trunk and whole body backward bending and suggests a possible neural control strategy. The hypothesis was that the control system can be modeled as a linear feedback system, in which the torque acting at a given joint is a function of the state variables (angular positions and angular velocities). The linear system enabled representation of the feedback system by a gain matrix. The matrix was computed from the kinematics recorded by a movement analysis system and from the joint torques calculated by inverse dynamics. To validate the control model, a comparison was made between the angular kinematics yielded by the model and the experimental data. Moreover, for all subjects, the same relationships between feedback coefficients were found although gain values were different. The study showed that the feedback system is an appropriate model of the strategy from performing an accurate controlled trunk or whole body backward bending in the sagittal plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号