首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Change blindness (CB) occurs when people miss changes across views. Hypothetically, CB would occur if observers failed to represent information about the changing object, but CB would also occur if observers represented and failed to compare information across views, or represented only the pre- or post-change object. For a variety of reasons, previous studies have been unable to determine which of these alternatives contribute to CB in an incidental real-world setting. To address these ambiguities, we conducted two real-world experiments using stimuli that changed on only one feature and tested recognition memory for both the changing feature and a non-changing feature. Participants also provided confidence ratings on recognition responses, allowing us to test whether CB has multiple causes within a single task setting. The results suggest that, in a single real-world setting, CB can be caused by both a failure to represent and a failure to compare information across views.  相似文献   

2.
Across saccades, blinks, blank screens, movie cuts, and other interruptions, observers fail to detect substantial changes to the visual details of objects and scenes. This inability to spot changes (“change blindness”) is the focus of this special issue of Visual Cognition. This introductory paper briefly reviews recent studies of change blindness, noting the relation of these findings to earlier research and discussing the inferences we can draw from them. Most explanations of change blindness assume that we fail to detect changes because the changed display masks or overwrites the initial display. Here I draw a distinction between intentional and incidental change detection tasks and consider how alternatives to the “overwriting” explanation may provide better explanations for change blindness.  相似文献   

3.
Change blindness illustrates a remarkable limitation in visual processing by demonstrating that substantial changes in a visual scene can go undetected. Because these changes can ultimately be detected using top-down driven search processes, many theories assign a central role to spatial attention in overcoming change blindness. Surprisingly, it has been reported that change blindness can occur during blink-contingent changes even when observers fixate the changing location [O'Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition, 7, 191-212]. However, eye blinks produce a transient disruption of vision that is independent of any associated changes in the retinal image. We determined whether these 'attentive blank stares' could occur in the absence of blink-mediated visual suppression. Using a flicker change-blindness paradigm we confirm that despite direct attentive fixations, obvious scene changes often remain undetected. We conclude that change detection involves object or feature based attentional mechanisms, which can be 'misdirected' despite the allocation of spatial attention to the position of the change.  相似文献   

4.
Tolhurst DJ  Tadmor Y 《Perception》2000,29(9):1087-1100
We have developed a protocol for testing experimentally the hypothesis that the human visual system is optimised for making visual discriminations amongst natural scenes. Visual stimuli were made by gradual blending of the Fourier spectra of digitised photographs of natural scenes. The statistics of the stimuli were made unnatural to varying degrees by changing the overall slopes of the amplitude spectra of the stimuli. Thresholds were measured for discriminating small amounts of spectral blending at different spectral slopes. We found that thresholds were lowest when the spectral slope was natural; thresholds were increased when the slopes were either shallower or steeper than natural. A number of spurious cues were considered, such as differences in mean luminance or overall spectral power or contrast between test and reference stimuli. Control experiments were performed to remove such spurious cues, and the discrimination thresholds were still lowest for stimuli that were most natural. Thus, these experiments do provide experimental support for the idea that human vision and the human visual system are optimised for processing natural visual information [corrected].  相似文献   

5.
The change blindness paradigm, in which participants often fail to notice substantial changes in a scene, is a popular tool for studying scene perception, visual memory, and the link between awareness and attention. Some of the most striking and popular examples of change blindness have been demonstrated with digital photographs of natural scenes; in most studies, however, much simpler displays, such as abstract stimuli or “free-floating” objects, are typically used. Although simple displays have undeniable advantages, natural scenes remain a very useful and attractive stimulus for change blindness research. To assist researchers interested in using natural-scene stimuli in change blindness experiments, we provide here a step-by-step tutorial on how to produce changes in natural-scene images with a freely available image-processing tool (GIMP). We explain how changes in a scene can be made by deleting objects or relocating them within the scene or by changing the color of an object, in just a few simple steps. We also explain how the physical properties of such changes can be analyzed using GIMP and MATLAB (a high-level scientific programming tool). Finally, we present an experiment confirming that scenes manipulated according to our guidelines are effective in inducing change blindness and demonstrating the relationship between change blindness and the physical properties of the change and inter-individual differences in performance measures. We expect that this tutorial will be useful for researchers interested in studying the mechanisms of change blindness, attention, or visual memory using natural scenes.  相似文献   

6.
People are sensitive to the summary statistics of the visual world (e.g., average orientation/speed/facial expression). We readily derive this information from complex scenes, often without explicit awareness. Given the fundamental and ubiquitous nature of summary statistical representation, we tested whether this kind of information is subject to the attentional constraints imposed by change blindness. We show that information regarding the summary statistics of a scene is available despite limited conscious access. In a novel experiment, we found that while observers can suffer from change blindness (i.e., not localize where change occurred between two views of the same scene), observers could nevertheless accurately report changes in the summary statistics (or “gist”) about the very same scene. In the experiment, observers saw two successively presented sets of 16 faces that varied in expression. Four of the faces in the first set changed from one emotional extreme (e.g., happy) to another (e.g., sad) in the second set. Observers performed poorly when asked to locate any of the faces that changed (change blindness). However, when asked about the ensemble (which set was happier, on average), observer performance remained high. Observers were sensitive to the average expression even when they failed to localize any specific object change. That is, even when observers could not locate the very faces driving the change in average expression between the two sets, they nonetheless derived a precise ensemble representation. Thus, the visual system may be optimized to process summary statistics in an efficient manner, allowing it to operate despite minimal conscious access to the information presented.  相似文献   

7.
Gorillas in our midst: sustained inattentional blindness for dynamic events   总被引:16,自引:0,他引:16  
Simons DJ  Chabris CF 《Perception》1999,28(9):1059-1074
With each eye fixation, we experience a richly detailed visual world. Yet recent work on visual integration and change direction reveals that we are surprisingly unaware of the details of our environment from one view to the next: we often do not detect large changes to objects and scenes ('change blindness'). Furthermore, without attention, we may not even perceive objects ('inattentional blindness'). Taken together, these findings suggest that we perceive and remember only those objects and details that receive focused attention. In this paper, we briefly review and discuss evidence for these cognitive forms of 'blindness'. We then present a new study that builds on classic studies of divided visual attention to examine inattentional blindness for complex objects and events in dynamic scenes. Our results suggest that the likelihood of noticing an unexpected object depends on the similarity of that object to other objects in the display and on how difficult the priming monitoring task is. Interestingly, spatial proximity of the critical unattended object to attended locations does not appear to affect detection, suggesting that observers attend to objects and events, not spatial positions. We discuss the implications of these results for visual representations and awareness of our visual environment.  相似文献   

8.
Studies concerning the processing of natural scenes using eye movement equipment have revealed that observers retain surprisingly little information from one fixation to the next. Other studies, in which fixation remained constant while elements within the scene were changed, have shown that, even without refixation, objects within a scene are surprisingly poorly represented. Although this effect has been studied in some detail in static scenes, there has been relatively little work on scenes as we would normally experience them, namely dynamic and ever changing. This paper describes a comparable form of change blindness in dynamic scenes, in which detection is performed in the presence of simulated observer motion. The study also describes how change blindness is affected by the manner in which the observer interacts with the environment, by comparing detection performance of an observer as the passenger or driver of a car. The experiments show that observer motion reduces the detection of orientation and location changes, and that the task of driving causes a concentration of object analysis on or near the line of motion, relative to passive viewing of the same scene.  相似文献   

9.
ABSTRACT

Change blindness for the contents of natural scenes suggests that only items that are attended while the scene is still visible are stored, leading some to characterize our visual experiences as sparse. Experiments on iconic memory for arrays of discrete symbols or objects, however, indicate observers have access to more visual information for at least several hundred milliseconds at offset of a display. In the experiment presented here, we demonstrate an iconic memory for complex natural or real-world scenes. Using a modified change detection task in which to-be changed objects are cued at offset of the scene, we show that more information from a natural scene is briefly stored than change blindness predicts and more than is contained in visual short-term memory. In our experiment, a cue appearing 0, 300, or 1000?msec after offset of the pre-change scene or at onset of the second scene presentation (a Post Cue) directed attention to the location of a possible change. Compared to a no-cue condition, subjects were significantly better at detecting changes and identifying what changed in the cue condition, with the cue having a diminishing effect as a function of time and no effect when its onset coincided with that of the second scene presentation. The results suggest that an iconic memory of a natural scene exists for at least 1000?msec after scene offset, from which subjects can access the identity of items in the pre-change scene. This implies that change blindness underestimates the amount of information available to the visual system from a brief glance of a natural scene.  相似文献   

10.
A series of experiments provided converging support for the hypothesis that action preparation biases selective attention to action-congruent object features. When visual transients are masked in so-called change-blindness scenes, viewers are blind to substantial changes between 2 otherwise identical pictures that flick back and forth. The authors report data in which participants planned a grasp prior to the onset of a change-blindness scene in which 1 of 12 objects changed identity. Change blindness was substantially reduced for grasp-congruent objects (e.g., planning a whole-hand grasp reduced change blindness to a changing apple). A series of follow-up experiments ruled out an alternative explanation that this reduction had resulted from a labeling or strategizing of responses and provided converging support that the effect genuinely arose from grasp planning.  相似文献   

11.
Evidence for preserved representations in change blindness   总被引:2,自引:0,他引:2  
People often fail to detect large changes to scenes, provided that the changes occur during a visual disruption. This phenomenon, known as "change blindness," occurs both in the laboratory and in real-world situations in which changes occur unexpectedly. The pervasiveness of the inability to detect changes is consistent with the theoretical notion that we internally represent relatively little information from our visual world from one glance at a scene to the next. However, evidence for change blindness does not necessarily imply the absence of such a representation---people could also miss changes if they fail to compare an existing representation of the pre-change scene to the post-change scene. In three experiments, we show that people often do have a representation of some aspects of the pre-change scene even when they fail to report the change. And, in fact, they appear to "discover" this memory and can explicitly report details of a changed object in response to probing questions. The results of these real-world change detection studies are discussed in the context of broader claims about change blindness.  相似文献   

12.
变化视盲(change blindness)现象,也称变化盲,是指视觉情景中人们不能觉察到某个事物变化的现象。研究以驾驶员为主体探讨了道路交通领域中的变化视盲现象。首先,从场景变化特征和驾驶员特征两个方面综述了影响驾驶员变化视盲的影响因素;其次,结合影响因素与变化视盲的特征理论建立了驾驶员变化检测的认知过程模型;最后,在模型的基础上,讨论了提高驾驶员变化检测能力的实际意义和潜在措施,并对未来有关交通安全变化视盲的研究予以展望。  相似文献   

13.
Change blindness is the relative inability of normally sighted observers to detect large changes in scenes when the low-level signals associated with those changes are either masked or of extremely low magnitude. Change detection can be inhibited by saccadic eye movements, artificial saccades or blinks, and 'mud splashes'. We now show that change detection is also inhibited by whole image motion in the form of sinusoidal oscillations. The degree of disruption depends upon the frequency of oscillation, which at 3 Hz is equivalent to that produced by artificial blinks. Image motion causes the retinal image to be blurred and this is known to affect object recognition. However, our results are inconsistent with good change detection followed by a delay due to poor recognition of the changing object. Oscillatory motion can induce eye movements that potentially mask or inhibit the low-level signals related to changes in the scene, but we show that eye movements promote rather than inhibit change detection when the image is moving.  相似文献   

14.
Simons DJ  Franconeri SL  Reimer RL 《Perception》2000,29(10):1143-1154
Findings from studies of visual memory and change detection have revealed a surprising inability to detect large changes to scenes from one view to the next ('change blindness'). When some form of disruption is introduced between an original and modified display, observers often fail to notice the change. This disruption can take many forms (e.g. an eye movement, a flashed blank screen, a blink, a cut in a motion picture, etc) with similar results. In all cases, the changes are sufficiently large that, were they to occur instantaneously, they would consistently be detected. Prior research on change blindness was predicated on the assumption that, in the absence of a visual disruption, the signal caused by the change would draw attention, leading to detection. In two experiments, we demonstrate that change blindness can occur even in the absence of a visual disruption. In one experiment, subjects actually detected more changes with a disruption than without one. When changes are sufficiently gradual, the visible change signal does not seem to draw attention, and large changes can go undetected. The findings are discussed in the context of metacognitive beliefs about change detection and the strategic decisions those beliefs entail.  相似文献   

15.
Visual attentional processing was examined in adult meditators and non-meditators on behavioral measures of change blindness, concentration, perspective-shifting, selective attention, and sustained inattentional blindness. Results showed that meditators (1) noticed more changes in flickering scenes and noticed them more quickly, (2) counted more accurately in a challenging concentration task, (3) identified a greater number of alternative perspectives in multiple perspectives images, and (4) showed less interference from invalid cues in a visual selective attention task, but (5) did not differ on a measure of sustained inattentional blindness. Together, results show that regular meditation is associated with more accurate, efficient, and flexible visual attentional processing across diverse tasks that have high face validity outside of the laboratory. Furthermore, effects were assessed in a context separate from actual meditation practice, suggesting that meditators’ better visual attention is not just immediate, but extends to contexts separate from meditation practice.  相似文献   

16.
When two scenes are alternately displayed, separated by a mask, even large, repeated changes between the scenes often go unnoticed for surprisingly long durations. Change blindness of this sort is attenuated at “centres of interest” in the scenes, however, supporting a theory of change blindness in which attention is necessary to perceive such changes (Rensink, O'Regan, & Clark, 1997). Problems with this measure of attentional selection - via verbally described “centres of interest” - are discussed, including worries about describability and explanatory impotence. Other forms of attentional selection, not subject to these problems, are employed in a “flicker” experiment to test the attention-based theory of change detection. Attenuated change blindness is observed at attended items when attentional selection is realized via involuntary exogenous capture of visual attention - to late-onset items and colour singletons - even when these manipulations are uncorrelated with the loci of the changes, and are thus irrelevant to the change detection task. These demonstrations ground the attention-based theory of change blindness in a type of attentional selection which is understood more rigorously than are “centres of interest”. At the same time, these results have important implications concerning the nature of exogenous attentional capture.  相似文献   

17.
People often miss salient events that occur right in front of them. This phenomenon, known as change blindness, reveals the limits of visual awareness. Here, we investigate the role of implicit processing in change blindness using an approach that allows partial dissociation of covert and overt attention. Traditional gaze-contingent paradigms adapt the display in real time according to current gaze position. We compare such a paradigm with a newly designed mouse-contingent paradigm where the visual display changes according to the real-time location of a user-controlled mouse cursor, effectively allowing comparison of change detection with mainly overt attention (gaze-contingent display; Experiment 2) and untethered overt and covert attention (mouse-contingent display; Experiment 1). We investigate implicit indices of target detection during change blindness in eye movement and behavioral data, and test whether affective devaluation of unnoticed targets may contribute to change blindness. The results show that unnoticed targets are processed implicitly, but that the processing is shallower than if the target is consciously detected. Additionally, the partial untethering of covert attention with the mouse-contingent display changes the pattern of search and leads to faster detection of the changing target. Finally, although it remains possible that the deployment of covert attention is linked to implicit processing, the results fall short of establishing a direct connection.  相似文献   

18.
In four experiments, we examined the role of auditory transients and auditory short-term memory in perceiving changes in a complex auditory scene comprising multiple auditory objects. Participants were presented pairs of complex auditory scenes that were composed of a maximum of four animal calls delivered in free field; participants were instructed to decide whether the two scenes were the same or different (Experiments 1, 2, and 4). Changes to the second scene consisted of either the addition or the deletion of one animal call. Contrary to intuitive predictions based on results from the visual change blindness literature, substantial deafness to the change emerged without regard to whether the scenes were separated by 500 msec of masking white noise or by 500 msec of silence (Experiment 1). In fact, change deafness was not even modulated by having the two scenes presented contiguously (i.e., 0-msec interval) or separated by 500 msec of silence (Experiments 2 and 4). This result suggests that change-related auditory transients played little or no role in change detection in complex auditory scenes. Instead, the main determinant of auditory change perception (and auditory change deafness) appears to have been the capacity of auditory short-term memory (Experiments 3 and 4). Taken together, these findings indicate that the intuitive parallels between visual and auditory change perception should be reconsidered.  相似文献   

19.
Change blindness, the failure to detect visual changes that occur during a disruption, has increasingly been used to infer the nature of internal representations. If every change were detected, detailed representations of the world would have to be stored and accessible. However, because many changes are not detected, visual representations might not be complete, and access to them might be limited. Using change detection to infer the completeness of visual representations requires an understanding of the reasons for change blindness. This article provides empirical support for one such reason: change blindness resulting from the failure to compare retained representations of both the pre- and postchange information. Even when unaware of changes, observers still retained information about both the pre- and postchange objects on the same trial.  相似文献   

20.
The initial categorization of complex visual scenes is a very rapid process. Here we find no differences in performance for upright and inverted images arguing for a neural mechanism that can function without involving high-level image orientation dependent identification processes. Using an adaptation paradigm we are able to demonstrate that artificial images composed to mimic the orientation distribution of either natural or man-made scenes systematically shift the judgement of human observers. This suggests a highly efficient feedforward system that makes use of “low-level” image features yet supports the rapid extraction of essential information for the categorization of complex visual scenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号