首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4 ± 3.8 years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8 min of prolonged exposure followed by 1 min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training.  相似文献   

2.
Falls are a major cause of injury, and often occur while turning, reaching, or bending. Yet, we have little understanding of how an ongoing feet-in place activity at the onset of imbalance, and its associated cognitive and biomechanical demands, influence our ability to recover balance. In the current study, we used an ankle-rocking paradigm to determine how the nature of the baseline task influences the balance recovery response to a backward support surface translation. Fourteen participants were instructed to “recover balance without stepping” and were perturbed at vertical while standing quietly (“S”), while ankle rocking and moving forward (“A_f”), or while ankle rocking and moving backward (“A_b”). The results showed that changes in rocking velocity at the time of the perturbation elicited changes in the incidence of stepping, magnitude of trunk angular displacements (p < .01), and the onset latencies of distal muscles (gastrocnemius and soleus, both p < .01) used to recover balance. In addition, plots of onset latencies across all muscles showed that onset latencies appeared to occur earlier in many muscles when participants held a static position compared to when they performed a dynamic task at the onset of the perturbation. The results suggest that muscle activities used to recover balance are tailored to the nature of the perturbation and the ongoing task, and that onset latencies are later when participants are performing a dynamic as opposed to static task at the time of a perturbation. These findings support previous research suggesting that automatic postural responses are highly adaptable to environmental, situational, and task demands.  相似文献   

3.
The aim of the present study was to determine the effects of trunk flexion–extension loading on the neuromuscular reflexive latencies and amplitude responses of the trunk musculature. Eighteen male and female subjects (18–27 yrs) participated in active and passive trunk flexion extension, performed ∼7 days apart. Subjects performed 60 trunk flexion–extension repetitions. Surface electromyography (EMG) was collected bilaterally from paraspinal and abdominal muscles. In the active condition, subjects volitionally moved their trunks, while in the passive condition the dynamometer controlled the movements. The trunk was perturbed before and immediately after 30 repetitions. Latency of muscle onset, latency of first peak, latency of maximum peak, and peak EMG amplitude were evaluated. No differences between conditions, sides, or perturbation session were apparent. Overall latencies were shorter in females (p < .05) and abdominal muscles compared to paraspinals (p < .05). Thoracic paraspinal muscle amplitudes were greater than all other muscles (p < .05). Based upon the present results, the neuromuscular system engages trunk flexor muscles prior to the paraspinals in order to provide possible stabilization of the trunk when flexor moments are generated. Overall, the results indicate no difference in response of the neuromuscular system to active or passive repetitive loading.  相似文献   

4.
This study examined whether dual-tasking affects an individual’s ability to generate arm muscle responses following a loss of balance. Nineteen young and 16 older adults recovered their balance in response to a surface translation. This balance task was either completed on its own or while counting backwards by 2’s (easy counting difficulty) or 7’s (hard counting difficulty). With increasing counting difficulty, less attentional resources were assumed to be available for balance recovery. The ability to generate arm muscle responses was quantified through the measurement of electromyographic (EMG) onset latencies and amplitudes from three arm muscles. Results indicated that the attentional requirements of the counting task did not greatly affect EMG onset latencies or amplitudes for both young and older adults. Even when an effect was observed, the magnitude of change was small (e.g., ∼3 ms earlier EMG onset and ∼2.0%MVC smaller EMG amplitude during the dual- compared to the single-task conditions). Thus, the generation of arm muscle responses do not appear to require a significant amount of attentional resources and the decreased ability to cope with cognitive interference with ageing is unlikely to explain why older adults have difficulty in generating arm responses following a loss of balance.  相似文献   

5.
Psychological processes may influence balance and contribute to the risk of falls in older people. While a self-reported fear of falling is associated with increased postural sway, inducing fear using an elevated platform can lead to reduced sway, suggesting different underlying mechanisms whereby fear may influence balance control. This study examined changes in postural sway, muscle activity and physiological measures of arousal while standing on a 65 cm elevated platform, compared to floor level, in young and older adults. The older adults were classified as fall concerned or not fall concerned based on the Falls Efficacy Scale-International and anxious or not anxious based on the Goldberg Anxiety Scale. Fall concern did not affect the physiological and sway response to the elevated platform. In response to the postural threat, the anxious participants increased their sway frequency (p = 0.001) but did not reduce sway range (p = 0.674). Conversely, non-anxious participants showed an adaptive tightening of balance control, effectively reducing sway range in the elevated condition (p < 0.001). Generalised anxiety in older adults appears to differentially affect postural control strategies under threatening conditions.  相似文献   

6.
Feedback delays in balance are often assessed using muscle activity onset latencies in response to discrete perturbations. The purpose of the study was to calculate EMG latencies in perturbed handstand, and determine if delays are different to unperturbed handstand. Twelve national level gymnasts completed 12 perturbed and 10 unperturbed (five eyes open and five closed) handstands. Forearm EMG latencies during perturbed handstands were assessed against delay estimates calculated via: cross correlations of wrist torque and COM displacement, a proportional and derivative model of wrist torque and COM displacement and velocity (PD model), and a PD model incorporating a passive stiffness component (PS-PD model). Delays from the PD model (161 ± 14 ms) and PS-PD model (188 ± 14 ms) were in agreement with EMG latencies (165 ± 14 ms). Cross correlations of COM displacement and wrist torque provided unrealistically low estimates (5 ± 9 ms). Delays were significantly lower during perturbed (188 ± 14 ms) compared to unperturbed handstand (eyes open: 207 ± 12 ms; eyes closed: 220 ± 19 ms). Significant differences in delays and model parameters between perturbed and unperturbed handstand support the view that balance measures in perturbed testing should not be generalised to unperturbed balance.  相似文献   

7.
Previous research has evaluated the motor proficiency of children with neurofibromatosis type 1 (NF1) and found delays on the balance subtest. However the balance subtest was found to have low sensitivity for identifying balance impairments. This study examines the differences in postural control between children with NF1 and peers with typical development using a force plate. A single limb stance test on a force plate was completed for all participants. The force plate variables, center of pressure maximum distance in the anterior/posterior direction (COPmax A/P) and center of pressure velocity (COPvel A/P) were compared between groups. The NF1 group’s performance was significantly poorer than the control group in both COPmax A/P (p = .01) and COPvel A/P (p = .01). When separated into specific age ranges, only the children in the NF1 group between 5 and 12 years of age demonstrated statistically significant differences in the COP variables. The COP variables for the 13- to 18-year-old group were not significantly different. These results indicate that young children with NF1 have poor postural control. However, postural control appears to improve with maturation.  相似文献   

8.
Gait initiation is a useful surrogate measure of supraspinal motor control mechanisms but has never been evaluated in a cohort following concussion. The aim of this study was to quantify the preparatory postural adjustments (PPAs) of gait initiation (GI) in fifteen concussion patients (4 females, 11 males) in comparison to a group of fifteen age- and sex-matched controls. All participants completed variants of the GI task where their dominant and non-dominant limbs as the ‘stepping’ and ‘support’ limbs. Task performance was quantified using the centre of pressure (COP) trajectory of each foot (computed from a force plate) and a surrogate of the centre of mass (COM) trajectory (estimated from an inertial measurement unit placed on the sacrum).Concussed patients exhibited decreased COP excursion on their dominant foot, both when it was the stepping limb (sagittal plane: 9.71 mm [95% CI: 8.14–11.27 mm] vs 14.9 mm [95% CI: 12.31–17.49 mm]; frontal plane: 36.95 mm [95% CI: 30.87–43.03 mm] vs 54.24 mm [95% CI: 46.99–61.50 mm]) and when it was the support limb (sagittal plane: 10.43 mm [95% CI: 8.73–12.13 mm] vs 18.13 mm [95% CI: 14.92–21.35 mm]; frontal plane: 66.51 mm [95% CI: 60.45–72.57 mm] vs 88.43 mm [95% CI: 78.53–98.32 mm]). This was reflected in the trajectory of the COM, wherein concussion patients exhibited lower posterior displacement (19.67 mm [95% CI: 19.65 mm–19.7 mm]) compared with controls (23.62 mm [95% CI: 23.6–23.64]). On this basis, we conclude that individuals with concussion display deficits during a GI task which are potentially indicative of supraspinal impairments in motor control.  相似文献   

9.
Impaired spinal-level neuromuscular control is suggested to contribute to instability and injury during dynamic landing tasks. Despite this suggestion, spinal-level neuromuscular control is yet to be examined during a horizontal jump-landing task. The aim of the current study was to assess changes in H-reflexes and its reliability at the short-latency response of landings from short and long distances. Eight healthy individuals (five male, three female; age, 22 ± 1.2 yrs; height, 178 ± 8.1 cm; weight, 72 ± 15.7 kg) participated in the study. H-reflexes were evoked at the SLR in the soleus and medial gastrocnemius muscles, during two landing conditions: 25% and 50% of maximal broad jump distance. H-reflexes were expressed relative to the background electromyography (EMG) and maximal M-wave responses (M-max). Soleus H-reflexes were inhibited when landing from shorter distance (25%, 13.9 ± 7.6%; 50%, 8.3 ± 6.5%; p < 0.01). No change in H-reflex excitability was observed in medial gastrocnemius. Background EMG was unaltered across landing conditions. Inhibition of soleus H-reflex excitability from 25% to 50% landing condition indicates a reduced contribution of Ia-afferent feedback to the alpha-motor neuron during landings from greater distances, which may contribute to stiffness regulation at the ankle joint. Unaltered H-reflex excitability of medial gastrocnemius is most likely attributed to its functional role during the landing task.  相似文献   

10.
Research on motor behavioural processes preceding voluntary movements often refers to analysing the readiness potential (RP). For this, decades of studies used laboratory setups with controlled sports-related actions. Further, recent applied approaches focus on athlete-non-athlete comparisons, omitting possible effects of training history on RP. However, RP preceding real sport-specific movements in accordance to skill acquisition remains to be elucidated.Therefore, after familiarization 16 right-handed males with no experience in archery volunteered to perform repeated sports-specific movements, i.e. 40 arrow-releasing shots at 60 s rest on a 15 m distant standard target. Continuous, synchronised EEG and right limb EMG recordings during arrow-releasing served to detect movement onsets for RP analyses over distinct cortical motor areas. Based on attained scores on target, archery novices were, a posteriori, subdivided into a skilled and less skilled group. EMG results for mean values revealed no significant changes (all p > 0.05), whereas RP amplitudes and onsets differed between groups but not between motor areas. Arrow-releasing preceded larger RP amplitudes (p < 0.05) and later RP onsets (p < 0.05) in skilled compared to less skilled novices. We suggest this to reflect attentional orienting and greater effort that accompanies central neuronal preparatory states of a sports-specific movement.  相似文献   

11.
The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson’s disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n = 8) and bilateral group (n = 11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups × medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups × medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior–posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior–posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks.  相似文献   

12.
Previous research has indicated that muscle fatigue due to repeated bouts of physical activity can have negative residual effects on balance; however investigations using multi-joint forms of exercise involved in everyday settings and determination of how control of posture is altered during the physical activity itself are limited. The purpose of this investigation was to evaluate alterations in postural stability before, during, and after prolonged multi-joint STS exercise in healthy young adults. Center of pressure (COP) acquisitions were collected during repetitive STS exercise, while voluntary limits of stability (LOS) testing was performed before, immediately after, and 10 min after STS exercise. By 50% total STS exercise time, fatigue resulted in increased anterio-posterior (y) and medio-lateral (x) COP path lengths (p = 0.003 and p = 0.018 respectively) and an anterior shift of COP at seat-off towards the mid-foot (p = 0.010). No significant change in LOS mean amplitude was found after STS exercise; however a significant fatigue effect resulted in increased COPy sway velocity at maximal lean positions (p = 0.006), but returned to PRE values after 10 min of rest. Declines in postural stability during repetitive STS exercise was associated with reduced control of COP, as well as a reduced ability to stably control COP at extreme postural limits; however, 10 min was adequate in young adults for recovery. These results may have important implications for monitoring fall risk due to acute bouts of exercise induced muscle fatigue from repetitive multi-joint activities such as the STS.  相似文献   

13.
The aim of the present study was to verify whether the expectation of perturbations while performing side-step cutting manoeuvres influences lower limb EMG activity, heel kinematics and ground reaction forces. Eighteen healthy men performed two sets of 90° side-step cutting manoeuvres. In the first set, 10 unperturbed trials (Base) were performed while stepping over a moveable force platform. In the second set, subjects were informed about the random possibility of perturbations to balance throughout 32 trials, of which eight were perturbed (Pert, 10 cm translation triggered at initial contact), and the others were “catch” trials (Catch). Center of mass velocity (CoMVEL), heel acceleration (HAC), ground reaction forces (GRF) and surface electromyography (EMG) from lower limb and trunk muscles were recorded for each trial. Surface EMG was analyzed prior to initial contact (PRE), during load acceptance (LA) and propulsion (PRP) periods of the stance phase. In addition, hamstrings-quadriceps co-contraction ratios (CCR) were calculated for these time-windows. The results showed no changes in CoMVEL, HAC, peak GRF and surface EMG PRE among conditions. However, during LA, there were increases in tibialis anterior EMG (30–50%) concomitant to reduced EMG for quadriceps muscles, gluteus and rectus abdominis for Catch and Pert conditions (15–40%). In addition, quadriceps EMG was still reduced during PRP (p < .05). Consequently, CCR was greater for Catch and Pert in comparison to Base (p < .05). These results suggest that there is modulation of muscle activity towards anticipating potential instability in the lower limb joints and assure safety to complete the task.  相似文献   

14.
We investigated the time course of neuromuscular and hypertrophic adaptations associated with only four weeks of barbell squat and deadlift training. Forty-seven previously untrained women (mean ± SD, age = 21 ± 3 years) were randomly assigned to low volume training (n = 15), moderate volume training (n = 16), and control (n = 16) groups. The low and moderate volume training groups performed two and four sets, respectively, of five repetitions per exercise, twice a week. Testing was performed weekly, and included dual X-ray absorptiometry and vastus lateralis and rectus femoris B-mode ultrasonography. Bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and biceps femoris during isometric maximal voluntary contractions of the leg extensors. Significant increases in lean mass for the combined gynoid and leg regions for the low (+0.68 kg) and moderate volume (+0.47 kg) groups were demonstrated within three weeks. Small-to-moderate effect sizes were shown for leg lean mass, vastus lateralis thickness and pennation angle, and peak torque, but EMG amplitude was unaffected. These findings demonstrated rapid muscular adaptations in response to only eight sessions of back squat and deadlift training in women despite the absence of changes in agonist–antagonist EMG amplitude.  相似文献   

15.
ObjectivesTo assess the effects of voluntarily reducing postural sway on postural control and to determine the attention level needed to do so in healthy adults (n = 16, 65.9 ± 9.7) and persons with PD (n = 25, 65.8 ± 9.5 years). Tasks: quiet and still standing conditions with and without a category task. Cognitive performance, center of pressure (CoP) displacement variability (RMSCoP) and velocity (VCoP) were assessed in the anterior-posterior (AP) and medial-lateral (ML) directions.Controls showed larger RMSCoP (AP) and VCoP (AP and ML) during still versus quiet standing (p < 0.01), while the PD group demonstrated no changes. In the PD group, RMSCoP and VCoP (ML) increased in still standing when performed with the cognitive task (p < 0.05). In both groups, cognitive responses decreased in still standing (p < 0.05).In PD, attempting to reduce postural sway did not affect postural control under single task conditions, however ML CoP variability and velocity did increase as a dual task. In older adults, increased displacement and velocity in both AP and ML directions was observed during single, but not dual task conditions. Therefore standing still might not be an adequate postural strategy as it increases the attentional demand and affects motor performance, putting persons with PD at greater risk for falls.  相似文献   

16.
Athletes are assumed to exhibit better balance than non-athletes; however, few studies have examined the role of different types of sports on balance measures. Two athlete groups that experience divergent sport-specific balance training are stable- (i.e. basketball) and unstable-surface athletes (i.e. surfers). The purpose of this study was to quantify the effect of stable- compared to unstable-surface sports on postural stability.MethodsEight non-athletes (NON), eight stable-surface athletes (SSA) and eight unstable-surface athletes (USA) performed five 20-s quiet standing trials while ground reaction forces were recorded. Approximate entropy (ApEn), total excursion and root mean square distances (RMS) of the center of pressure position were calculated. Univariate ANOVAs with post hoc tests were conducted for each variable.ResultsApEn values were lower in SSA compared to NON in the ML direction (p = 0.012) and USA had lower ApEn values compared to SSA in the AP direction (p = 0.036). The USA had smaller AP RMS compared to SSA (p = 0.002) while the USA had greater ML RMS (p = 0.008) and resultant RMS values compared to SSA (p = 0.025).DiscussionThese data suggest that USA and SSA may exhibit direction-specific differences in balance strategy due to feedback paradigm.  相似文献   

17.
In this study, we examined the interaction between central and peripheral proprioceptive afferent pathways by applying ankle tendon vibration during postural leaning in different directions. Twenty young participants stood for 60s over the midline of two adjacent force platforms in (a) neutral stance distributing Body Weight (BW) equally between the platforms, (b) forward leaning transferring 80% of BW to the front platform and (c) backward leaning transferring 80% of BW to the rear platform. Participants controlled the degree of leaning by receiving on-line visual feedback of BW distribution matched to a target line. Vibration (80 Hz, 1.5–1.8 mm) was applied over the Achilles or tibialis anterior tendon during the middle 20s of standing. This induced a postural shift towards the vibration side and an increase in the variability of the BW distribution that was greater in backward compared to forward leaning. EMG responses to tendon vibration were independent of the leaning direction. Antagonistic activity also increased in response to vibration, the amplitude of this increase however was direction dependent. These results favor the hypothesis about the central co-modulation of the vibration evoked proprioceptive inflow based on postural and visual feedback rather than muscle tension constraints.  相似文献   

18.
In the present study we investigated the effects of different durations of using high-heeled shoes on plantar pressure and gait. A questionnaire survey and dynamic plantar pressure measurements were performed in 20 control females and 117 females who had worn high-heeled shoes for a long time. According to the duration of using high-heeled shoes (as specified in the questionnaire), subjects were divided into a control group and five groups with different durations of use (i.e. <2 years, 2–5 years, 6–10 years, 11–20 years and >20 years). Parameters, including peak pressure, impulse and pressure duration, in different plantar regions were measured with the Footscan pressure plate. The 2–5 years group had smaller midfoot contact areas for both feet and higher subtalar joint mobility, while the 6–10 years group had larger midfoot contact areas for both feet and prolonged foot flat phase during gait. The peak pressure and impulse under the second and fourth metatarsus were increased with the prolonged wearing of high-heeled shoes, and the pressure and impulse under the midfoot were substantially reduced in the 2–5 years group. The findings suggest that long-term use of high-heeled shoes can induce changes in arch morphology: the longitudinal arch tends to be elevated within 2–5 years; the longitudinal arch tends to be flattened within 6–10 years; and the forefoot latitudinal arch tends to collapse in more than 20 years.  相似文献   

19.
We implemented a virtual reality system to quantify differences in the use of visual feedback to maintain balance during walking between healthy young (n = 12, mean age: 24 years) and healthy old (n = 11, 71 years) adults. Subjects walked on a treadmill while watching a speed-matched, virtual hallway with and without mediolateral visual perturbations. A motion capture system tracked center of mass (CoM) motion and foot kinematics. Spectral analysis, detrended fluctuation analysis, and local divergence exponents quantified old and young adults’ dynamic response to visual perturbations. Old and young adults walked normally with comparable CoM spectral characteristics, lateral step placement temporal persistence, and local divergence exponents. Perturbed visual flow induced significantly larger changes in mediolateral CoM motion in old vs. young adults. Moreover, visual perturbations disrupted the control of lateral step placement and compromised local dynamic stability more significantly in old than young adults. Advanced age induces a greater reliance on visual feedback to maintain balance during waking, an effect that may compensate for degradations in somatosensation. Our findings are relevant to the early diagnosis of sensory-induced balance impairments and also point to the potential use of virtual reality to evaluate sensory rehabilitation and balance training programs for old adults.  相似文献   

20.
Strength and rehabilitation professionals strive to emphasize certain muscles used during an exercise and it may be possible to alter muscle recruitment strategies with varying instructions. This study aimed to determine whether resistance trained and untrained males could selectively activate the pectoralis major or triceps brachii during the bench press according to various instructions. This study included 13 trained males (21.5 ± 2.9 years old, 178.7 ± 7.0 cm, 85.7 ± 10.7 kg) and 12 untrained males (20.3 ± 1.6 years old, 178.8 ± 9.4 cm, 74.6 ± 17.3 kg). Participants performed a bench press one-repetition maximum (1-RM) test, 3 uninstructed repetitions at 80% 1-RM and two more sets of three repetitions with instructions to isolate the chest or arm muscles. Electromyography (EMG) was obtained from the pectoralis major, anterior deltoid, and the long head and short head of the triceps brachii. Maximum EMG activity normalized to 1-RM for each muscle was averaged over the three repetitions for each set and compared between the uninstructed, chest-instructed and arm-instructed conditions among the groups. The trained participants had a greater 1-RM (126.2 ± 30.6 kg) than the untrained participants (61.6 ± 14.8 kg) (P < 0.01). EMG activity was not different between the groups for any of the instructions (P > 0.05). When the group data was combined, short head of the triceps activity was significantly lower in the chest instruction (80.1 ± 19.3%) when compared to the uninstructed (85.6 ± 23.3%; P = 0.01) and arm-instructed (86.0 ± 23.2; P = 0.01) conditions. It can be concluded that instructions can affect muscle activation during the bench press, and this is not dependent on training status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号