首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4 days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body’s ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control.  相似文献   

2.
The authors aimed to assess the effect of vision on variations in attentional resources allocated to postural control during tasks of various levels of difficulty. Test-retest reliability of postural and cognitive parameters was also evaluated. Twenty adults stood quietly on a force platform during 30-s trials (primary task). Twelve conditions involving combinations of three bases of support, two vision conditions, and the presence or absence of a simple reaction time task (secondary task) were tested. Baseline trials of the reaction time task were also performed with the participants seated. Reaction time and postural parameters demonstrated good to excellent test-retest reliability in most conditions. Postural control was altered by the reduction of the base of support and by the absence of vision. Maintaining an upright stance increased reaction time compared with a seated position, indicating that quiet standing tasks required some attention even in young adults. Changes in postural steadiness were correlated with changes in reaction time, showing a significant relationship between the difficulty of the postural task and the attentional resources allocated to postural control. However, reaction time increased with the reduction of the base of support only without vision. This dual task paradigm showed that vision can compensate for the increase in attentional demands during the most difficult postural tasks.  相似文献   

3.
ObjectivesThe postural control dual-task literature has demonstrated greater postural stability during dual-task in comparison to single task (i.e., standing balance alone through the examination of multiple kinetic and kinematic measures. This improve stability is thought to reflect an automatic mode of postural control during dual-task. Recently, sample entropy (SampEn) and wavelet discrete transform have supported the claim of automaticity, as higher SampEn values and a shift toward increased contributions from automatic sensory systems have been demonstrated in dual-task settings. In order to understand the cortical component of postural control, functional near-infrared spectroscopy has been used to measure cortical activation during postural control conditions. However, the neural correlates of automatic postural behaviour have yet to be fully investigated. Therefore, the purpose of this study is to confirm the presence of automatic postural control through static and dynamic balance measures, and to investigate the prefrontal cortex activation when concurrently performing quiet standing and the auditory cognitive tasks of varied difficulty.MethodEighteen healthy young adults (21.4 ± 3.96 yo), 12 females and 6 males, with no balance deficits were recruited. Participants were instructed to either quietly stand on a force platform (SM), perform three cognitive tasks while seated (SC) or perform both aforementioned tasks concurrently (DT).ResultsResults supported automatic postural control with lower area and standard deviation of center-of-pressure in DT conditions compared to SM. As for SampEn and the wavelet analysis, DT conditions demonstrated greater values than SM, and a shift from vision to a cerebellar contribution. For the most difficult cognitive task, the DNS task, a trend toward significantly lower right hemisphere prefrontal cortex activation compared to left hemisphere activation in DT was found, potentially representing a decrease in cognitive control, and the presence of automaticity.ConclusionThese findings suggest that the simultaneous performance of a difficult cognitive task and posture yields automatic postural behaviour, and provides insight into the neural correlates of automaticity.  相似文献   

4.
The control of postural sway depends on the dynamic integration of multi-sensory information in the central nervous system. Augmentation of sensory information, such as during auditory biofeedback (ABF) of the trunk acceleration, has been shown to improve postural control. By means of quantitative electroencephalography (EEG), we examined the basic processes in the brain that are involved in the perception and cognition of auditory signals used for ABF. ABF and Fake ABF (FAKE) auditory stimulations were delivered to 10 healthy naive participants during quiet standing postural tasks, with eyes-open and closed. Trunk acceleration and 19-channels EEG were recorded at the same time. Advanced, state-of-the-art EEG analysis and modeling methods were employed to assess the possibly differential, functional activation, and localization of EEG spectral features (power in α, β, and γ bands) between the FAKE and the ABF conditions, for both the eyes-open and the eyes-closed tasks. Participants gained advantage by ABF in reducing their postural sway, as measured by a reduction of the root mean square of trunk acceleration during the ABF compared to the FAKE condition. Population-wise localization analysis performed on the comparison FAKE - ABF revealed: (i) a significant decrease of α power in the right inferior parietal cortex for the eyes-open task; (ii) a significant increase of γ power in left temporo-parietal areas for the eyes-closed task; (iii) a significant increase of γ power in the left temporo-occipital areas in the eyes-open task. EEG outcomes supported the idea that ABF for postural control heavily modulates (increases) the cortical activation in healthy participants. The sites showing the higher ABF-related modulation are among the known cortical areas associated with multi-sensory, perceptual integration, and sensorimotor integration, showing a differential activation between the eyes-open and eyes-closed conditions.  相似文献   

5.
The authors investigated the emergence of independent control of body segments in bimanual tasks involving either voluntary or involuntary trunk motion by tracking the transition from an ego- to an exocentric mode of postural control during childhood (i.e., from body-referenced orientation to externally referenced action). A paradigm combining a seated manual task and various trunk manipulations described the coordination strategies used by 24 children at different ages (2 to 9 years) and by adults. The following questions were asked: (a) When do children begin to dissociate upper limb movements from those of the trunk? (b) What segmental strategies are exhibited by each age group (2-3, 4-6, and 7-9 years, and adults)? Kinematic analyses revealed that younger children (2-6 years) used either the trunk or the support surface as reference to orient the limbs. Older children (7-9 years) began to use a gravitational reference frame similar to that of adults; they uncoupled upper limb motion from the trunk in either voluntary or imposed conditions. Young children patterned the forearm trajectory after the initiating segment (support surface or the trunk), thus reducing the degrees of freedom during the dual task. Echoing previous reports, 7-9 years of age appears to be a critical period in which children master postural control and develop an internal representation of body scheme.  相似文献   

6.
The authors investigated the emergence of independent control of body segments in bimanual tasks involving either voluntary or involuntary trunk motion by tracking the transition from an ego- to an exocentric mode of postural control during childhood (i.e., from body-referenced orientation to externally referenced action). A paradigm combining a seated manual task and various trunk manipulations described the coordination strategies used by 24 children at different ages (2 to 9 years) and by adults. The following questions were asked: (a) When do children begin to dissociate upper limb movements from those of the trunk? (b) What segmental strategies are exhibited by each age group (2-3, 4-6, and 7-9 years, and adults)? Kinematic analyses revealed that younger children (2-6 years) used either the trunk or the support surface as reference to orient the limbs. Older children (7-9 years) began to use a gravitational reference frame similar to that of adults; they uncoupled upper limb motion from the trunk in either voluntary or imposed conditions. Young children patterned the forearm trajectory after the initiating segment (support surface or the trunk), thus reducing the degrees of freedom during the dual task. Echoing previous reports, 7-9 years of age appears to be a critical period in which children master postural control and develop an internal representation of body scheme.  相似文献   

7.
This study identified the level of trunk control of healthy term infants aged from six to nine months. This cross-sectional study included fifty-five infants aged from six to nine months. The levels of trunk control was investigated by using the Segmental Assessment Trunk Control (SATCo). The infants remained seated on a wooden bench and a neutral pelvic position was maintained. The SATCo score was considered as dependent variable. The results showed that infants aged six and seven months presented levels of trunk control in the thoracic region while infants aged from eight to nine months presented full trunk control. These results demonstrate that younger infants present less levels of trunk control while older infants present full trunk control, confirming that trunk control development takes place in a segmental way and in a cephalocaudal direction. These results also might be used as a reference to distinguish infants that show a delay in trunk control from those who have suitable motor development and, thus intervene at an early stage to minimize later delays in these infantś global motor development.  相似文献   

8.
The ability to adapt anticipatory postural adjustments (APAs) in response to perturbations during single-joint movements is altered in people with chronic low back pain (LBP), but a comprehensive analysis during functional motor tasks is still missing. This study aimed to compare APAs and stepping characteristics during gait initiation between people with LBP and healthy controls, both in normal (without cue occurrence) condition and when an unexpected visual cue required to switch the stepping limb. Fourteen individuals with LPB and 10 healthy controls performed gait initiation in normal and switch conditions. The postural responses were evaluated through the analysis of center of pressure, propulsive ground reaction forces, trunk and whole-body kinematics, and activation onsets of leg and back muscles. During normal gait initiation, participants with LBP exhibited similar APAs and stepping characteristics to healthy controls. In the switch condition, individuals with LBP were characterized by greater mediolateral postural stability but decreased forward body motion and propulsion before stepping. The thorax motion was associated with forward propulsion parameters in both task conditions in people with LBP but not healthy controls. No between-group differences were found in muscle activation onsets. The results suggest that postural stability is prioritized over forward locomotion in individuals with LBP. Furthermore, the condition-invariant coupling between thorax and whole-body forward propulsion in LBP suggests an adaptation in the functional use of the thorax within the postural strategy, even in poor balance conditions.  相似文献   

9.
BackgroundIndividuals with Huntington's disease (HD) have impairments in performing dual-tasks, however, there is limited information about the effects of changing postural and cognitive demands as well as which measures are best suited as markers of underlying motor-cognitive interference.MethodsForty-three individuals with HD and 15 healthy controls (HC) completed single tasks of walking (Timed Up & Go (TUG), 7 m walk), standing (feet together, feet apart and foam surface) and seated cognitive performance (Stroop, Symbol Digit Modalities Test (SDMT), Delis-Kaplan Executive Function System (DKEFS) Sorting test) and dual cognitive-motor tasks while standing (+ Stroop) and walking (+ DKEFS, TUG cognitive). APDM Opal sensors recorded measures of postural sway and time to complete motor tasks.ResultsIndividuals with HD had a greater increase in standing postural sway compared to HC from single to dual-tasks and with changes to support surface. Both groups demonstrated a decrease in gait performance during the TUG cognitive, however, this difference was greater in people with HD compared to HC. While those with HD showed a greater dual-task motor cost compared to HC, both groups behaved similarly as condition complexity increased.ConclusionsStanding postural sway is a more sensitive marker of instability than change in standard gait speed, particularly under dual-task conditions. The more complex TUG cognitive is a sensitive measure of walking dual-task performance. The results of this study provide insights about the nature of motor-cognitive impairments in HD and provide support for a distinction between static and dynamic postural control mechanisms during performance of dual-tasks.  相似文献   

10.
Time to task failure of trunk extensor muscles during seated submaximal isometric exertions was assessed in 18 healthy participants using 2 different load types. One required supporting an inertial load (position-matching task) whereas the 2nd required maintaining an equivalent torque against a rigid restraint (force-matching task). Time to task failure was significantly longer for position-matching tasks compared to the force-matching tasks. This finding is opposite to that reported for the appendicular muscles. A subset of 4 individuals completed a 2nd experiment to test the time to task failure of the elbow flexors in the position- and force-matching tasks. Time to task failure of the elbow flexors was significantly longer for the force-matching tasks compared to position matching. Thus, the same population shows that the effects of load type on time to task failure are opposite for the appendicular and axial muscles. This could be an important issue in understanding the mechanisms of task failure, and the endurance capacity of the trunk extensor muscles.  相似文献   

11.
Similar effects have been reported for diverting attention from postural control and increased anxiety on the characteristics of center-of-pressure (COP) time series (decreased excursions and elevated mean power frequency). These effects have also received similar interpretations in terms of increased postural stiffness, suggesting that cognitive and affective manipulations have similar influences on postural control. The present experiment tested this hypothesis by comparing postural conditions involving manipulations of attention (diverting attention from posture using cognitive and motor dual tasks) and anxiety (standing at a height), and by complementing posturography with electromyographic analyses to directly examine neuromuscular stiffness control. Affective and cognitive manipulations had markedly different effects. Unlike the height condition, diverting attention from balance induced smaller COP amplitudes and higher sway frequencies. In addition, more regular COP trajectories (lower sample entropy) were found in the height condition than the dual-task conditions, suggesting elevated attentional investment in posture under the affective manipulation. Finally, based on an analysis of the cross-correlation function between anterior-posterior COP time series and enveloped calf muscle activity, indications of tighter anticipatory neuromuscular control of posture were found for the height condition only. Our data suggest that affective and cognitive perturbations have qualitatively different effects on postural control, and thus are likely to be associated with different control processes, as evidenced by differences in neuromuscular regulation and attentional investment in posture.  相似文献   

12.
Poor upper-limb coordination is a common difficulty for children with developmental coordination disorder (DCD). One hypothesis is that deviant muscle timing in proximal muscle groups results in poor postural and movement control. The relationship between muscle timing, arm motion and children's upper-limb coordination deficits has not previously been studied. The aim of this study was to investigate the relationship between functional difficulties with upper-limb motor skills and neuromuscular components of postural stability and coordination. Sixty-four children aged 8-10 years, 32 with DCD and 32 without DCD, participated in the study. The study investigated timing of muscle activity and resultant arm movement during a rapid, voluntary, goal-directed arm movement. Results showed that compared to children without DCD, children with DCD took significantly longer to respond to visual signals and longer to complete the goal-directed movement. Children with DCD also demonstrated altered activity in postural muscles. In particular, shoulder muscles, except for serratus anterior, and posterior trunk muscles demonstrated early activation. Further, anterior trunk muscles demonstrated delayed activation. In children with DCD, anticipatory function was not present in three of the four anterior trunk muscles. These differences support the hypothesis that in children with DCD, altered postural muscle activity may contribute to poor proximal stability and consequently poor arm movement control when performing goal-directed movement. These results have educational and functional implications for children at school and during activities of daily living and leisure activities and for clinicians assessing and treating children with DCD.  相似文献   

13.
《Acta psychologica》2013,142(3):356-361
A substantial amount of literature has demonstrated individuals' tendency to code verbally a series of movements for subsequent recall. However, the mechanisms underlying movement encoding remain unclear. In this paper, I argue that sensorimotor expertise influences the involvement of motor processes to store movements in working memory. Experts in motor activities and individuals with limited motor expertise were compared in three experimental conditions assessing movement recall: (a) without suppression task, (b) with verbal suppression, and (c) with motor suppression. Athletes outperformed controls in movement recall, but the suppression tasks affected the two groups differently. Verbal suppression affected controls more than athletes, whereas the effect was reversed with motor suppression. Together, these findings suggest that controls and athletes favor different mechanisms to encode movements, either based on verbal or on motor processes, providing further evidence for a tight relationship between sensorimotor and cognitive processes.  相似文献   

14.
Localized muscle fatigue and postural perturbation have separately been shown to alter whole-body movement but little is known about how humans respond when subjected to both factors combined. Here we sought to quantify the kinematics of postural control and repetitive upper limb movement during standing surface perturbations and in the presence of fatigue. Subjects stood on a motion-based platform and repetitively reached between two shoulder-height targets until noticeably fatigued (rating of perceived exertion = 8/10). Every minute, subjects experienced a posterior and an anterior platform translation while reaching to the distal target. Outcomes were compared prior to and with fatigue (first vs. final minute data). When fatigued, regardless of the perturbation condition, subjects decreased their shoulder abduction and increased contralateral trunk flexion, a strategy that may relieve the load on the fatiguing upper limb musculature. During perturbations, kinematic adaptations emerged across the trunk and arm to preserve task performance. In contrast to our expectation, the kinematic response to the perturbations did not alter in the presence of fatigue. Kinematic adaptations in response to the perturbation predominantly occurred in the direction of the reach whereas fatigue adaptations occurred orthogonal to the reach. These findings suggest that during repetitive reaching, fatigue and postural perturbation compensations organize so as to minimize interaction with each other and preserve the global task characteristics of endpoint motion.  相似文献   

15.
Walking is considered an automatic function which demands little attentional resources. Thus a residual attentional capacity is available for a concurrent task (dual task). Minor age-related deficits in postural control may minimize the residual attentional capacity, however this may not be detected by a simple examination of the individuals gait performance. This study investigated the use of challenging dual task combinations to detect age related changes in gait performance. Eleven community-dwelling elderly (mean age 76 years) and 13 young subjects (mean age 26 years) participated in the study. The participants walked along a figure-of-eight track at a self-selected speed. The effect of introducing a concurrent cognitive task and a concurrent functional motor task was evaluated. Stride-to-stride variability was measured by heel contacts and by trunk accelerometry. In response to the cognitive task the elderly increased their temporal stride-to-stride variability by 39% in the walking task and by 57% in the combined motor task. These increases were significantly larger than observed for the young. Equivalent decreases in trunk acceleration autocorrelation coefficients and gait speed were found. A combination of sufficiently challenging motor tasks and concurrent cognitive tasks can reveal signs of limited residual attentional capacity during walking amongst the elderly.  相似文献   

16.
The authors investigated postural and arm control in seated reaches while providing trunk support at midribs and pelvic levels in adults. Kinematics and electromyography of the arm and ipsiliateral and contralateral paraspinal muscles were examined before and during reaching. Kinematics remained constant across conditions, but changes were observed in neuromuscular control. With midribs support, the ipsilateral cervical muscle showed either increased anticipatory activity or earlier compensatory muscle responses, suggesting its major role in head stabilization. The baseline activity of bilateral lumbar muscles was enhanced with midribs support, whereas with pelvic support, the activation frequency of paraspinal muscles increased during reaching. The results suggest that segmental trunk support in healthy adults modulates ipsilateral or contralateral paraspinal activity while overall kinematic outputs remain invariant.  相似文献   

17.
Abstract

The authors’ aim was to verify the correlation between segmental trunk control and gross motor performance in healthy preterm (PT) and full-term (FT) infants aged 6 and 7?months and to verify if there are differences between groups. All infants were assessed at 6 and 7?months by means of Segmental Assessment of Trunk Control (SATCo) to identify the exact level of segmental trunk control and Alberta Infant Motor Scale (AIMS) to measure gross motor performance. A significant correlation between segmental trunk control and gross motor performance was found in healthy PT infants at 7?months and FT infants at 6?months. PT infants showed a delay on segmental trunk control at 6 and 7?months and in supported standing posture at 6?months compared with FT infants. Segmental trunk control and gross motor performance showed an important relationship in healthy PT and FT infants, mainly in sitting posture.  相似文献   

18.
The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill–specific bias in the reweighing of sensory inputs for spatial orientation and postural control.  相似文献   

19.
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during a precision fitting task as task constraints became more difficult. Participants fit a block through an opening as arm kinematics, trunk kinematics, and center of pressure data were collected. During the fitting task, the precision, postural, and visual constraints of the task were manipulated. Young children adopted a strategy where they first move their trunk toward the opening and then stabilize their trunk (freeze degrees of freedom) as the precision manual task is being performed. In contrast, adults and older children make compensatory trunk movements as the task is being performed. The 10-year-olds were similar to adults under the less constrained task conditions, but they resembled the 7-year-olds under the more challenging tasks. The ability to either suppress or allow postural fluctuations based on the constraints of a suprapostural task begins to develop at around 10 years of age. This ability, once developed, allows children to learn specific segmental movements required to complete a task within an environmental context.  相似文献   

20.
Poor scapulothoracic control is a risk for developing shoulder pathology, but has received little attention so far in individuals with stroke (IwS). Trunk and scapular kinematics and surface muscle activity were measured in 15 healthy controls and 18 IwS during a low and high forward flexion (FF). Group-differences in trunk and scapular kinematics were assessed during low and high FF using a t-test (independent samples). Differences in muscle onset and offset time relative to movement start (both FF tasks) were determined using a mixed model taking into account the different groups and muscles. Recruitment patterns per group and task were described based on significant differences between muscles. In IwS, earlier lower trapezius and late infraspinatus offset were found during low FF, as well as a later onset and earlier offset of serratus anterior. For low FF, significantly more trunk axial rotation was found in IwS during both elevation and lowering. During high FF, IwS showed significantly less scapular posterior tilt during elevation and more scapular lateral rotation during lowering. IwS demonstrated adaptive muscle timing with earlier initiation and late inactivation of lower trapezius and infraspinatus, possibly to compensate for a late activation and early deactivation of the serratus anterior and to establish as such the correct pattern of scapulothoracic movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号