首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Groups of Long-Evans rats with bilateral lesions of the caudate nucleus, sham lesions, or no lesions were given one trial per day in an eight-arm radial maze. The same four maze arms were baited on each trial. The remaining four arms never contained food. Optimal performance required animals to enter each of the baited arms only once on each trial and to avoid entering the arms in the unbaited set. Rats with caudate lesions learned to enter each of the baited arms only once on each trial. However, these rats were severely impaired in learning to avoid entering the arms in the unbaited set. Implications for dual-memory theories are discussed.  相似文献   

2.
Using a radial maze analog task, T. R. Zentall, J. N. Steirn, and P. Jackson-Smith (1990) found evidence that when a delay was interpolated early in a trial, pigeons coded locations retrospectively, but when the delay was interpolated late in the trial, they coded locations prospectively (support for a dual coding hypothesis). In Experiment 1 of the present study, the authors replicated the original finding of dual coding. In Experiments 2 and 3, they used a 2-alternative test procedure that does not require the assumption that pigeons' choice criterion, which changes over the course of the trial, is the same on delay and control trials. Under these conditions, the pigeons no longer showed evidence for dual coding. Instead, there was some evidence that they showed prospective coding, but a more parsimonious account of the results may be that the delay produced a relatively constant decrement in performance at all points of delay interpolation. The original finding of dual coding by Zentall et al. might have been biased by more impulsive choices early in control trials but not in delay trials and by a more stringent choice criterion late in delay trials.  相似文献   

3.
It is well established that genetic deletion or pharmacological inhibition of the CB1 receptor disrupts extinction learning in aversive conditioning tasks, but not in appetitive tasks. Consistent with these findings is that genetic deletion or pharmacological inhibition of fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of the endogenous cannabinoid anandamide (AEA), accelerates acquisition as well as extinction in aversive conditioning tasks. However, it is unknown whether FAAH blockade will affect acquisition in an appetitive conditioning task. Therefore, in the present study, we assessed FAAH (−/−) and (+/+) mice in appetitive and aversive Barnes maze conditioning procedures. Here we report that FAAH (−/−) mice displayed accelerated acquisition rates in an aversively-motivated, but not in the appetitively-motivated, Barnes maze task. The CB1 receptor antagonist, rimonabant attenuated enhanced acquisition in the aversive procedure, consistent with the idea that elevated AEA levels mediate this apparent nootropic effect. These findings support the hypothesis that stimulation of the endocannabinoid system enhances learned behavior in aversive, but not appetitive, conditioning paradigms.  相似文献   

4.
The effects of intrabrainstem injections of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the B3 raphe region (nucleus raphe magnus and nucleus reticularis paragigantocellularis) on early ingestive behavior and nociception were assessed in Sprague-Dawley rat pups during the first postnatal week. Lesions resulted in a marked depletion of serotonin (5HT) in hindbrain without influencing 5HT levels in forebrain. Pretreatment with desipramine (DMI) resulted in a sparing of noradrenergic neurons from neurotoxic effects. The B3 lesion resulted in significant hyperalgesia as reflected by decreased latencies in tail flick testing. Although nipple attachment latencies in suckling tests were slightly increased by the lesion, no notable effects on mouthing or other ingestive-related behaviors were observed in testing conducted in an independent ingestion paradigm. These results suggest that whereas B3 serotonergic neurons may be functioning in an adult-typical manner to regulate analgesia during the early postnatal period, this raphe region may play only a slight role in the modulation of ingestion-related behaviors early in life.  相似文献   

5.
The acquisition of a radial-arm-maze task was unimpaired following administration of DSP-4, a selective noradrenergic neurotoxin. Maze performance remained unaffected when 5- or 30-min delays were imposed between the fourth and the fifth arm selection. Neurochemical analysis performed 90 days after injection revealed that DSP-4 significantly decreased concentrations of norepinephrine in the hippocampus, cortex, and cerebellum. The regional concentrations of dopamine and serotonin were not affected. These data are consistent with previous reports demonstrating that depletion of brain norepinephrine does not impair spatial learning and memory.  相似文献   

6.
Agents that alter adrenergic receptors, such as "beta-blockers," also alter memory storage. However, reports suggest that beta-adrenergic receptor antagonists, such as propranolol, have conflicting behavioral effects with acute vs chronic dosing. This study was designed to evaluate the effects of chronic propranolol on retention for a spatial learning task. Adult male ICR mice were given daily injections of propranolol (2, 4, 8, or 12 mg/kg ip) or 0. 9% NaCl for 15 days prior to, and during, trials in a Morris water maze. Mice received five massed acquisition (escape) trials in each of three daily sessions, followed by a single 60-s probe trial on the fourth day. The location of the submerged platform was constant for each animal over acquisition trials, but varied across animals; starting position varied across trials. A 5 (dose) x 3 (trial blocks) mixed factorial ANOVA for escape time yielded a significant trial blocks effect only (p <.001), showing performance improving over sessions. Time spent in the target quadrant on the probe trial was shorter under all doses of propranolol when compared to vehicle group (all p <.001), indicating poorer retention of prior platform location. This effect, however, was not dose-related. Swim speed was not significantly affected by propranolol. These data demonstrate that chronic dosing with propranolol can impair retention of spatial learning, which cannot be attributed to reduced arousal or motor function.  相似文献   

7.
The dentate gyrus (DG) subregion of the hippocampus has been shown to be involved in encoding but not retrieval in a spatial maze task (modified Hebb-Williams maze). The first experiment in this study examined whether a lesion to the CA3 would contribute to a similar encoding deficit. A DG group was included in order to replicate previous results. Relative to controls, animals receiving CA3 lesions were impaired in encoding, not retrieval, on the modified Hebb-Williams maze--similar to a group that received DG lesions. This suggests the possibility that CA3 and DG are working together to mediate encoding processes. The second experiment in this study was designed to test the interaction between CA3 and DG using a disconnection paradigm. Animals with contralateral lesions (CA3 lesioned in one hemisphere, DG lesioned in the other hemisphere) showed a significant disruption effect on encoding, but not retrieval, when compared with animals with ipsilateral lesions (CA3 and DG lesioned in the same hemisphere, leaving the other hemisphere intact). This suggests an interaction between CA3 and DG in supporting encoding but not retrieval processes in a spatial maze learning task.  相似文献   

8.
The current study used the partially-baited radial-arm maze paradigm to study the effects of a single-treatment high-dose exposure ('binge') to MDMA (± 3,4-methylenedioxymethaphemtamine or 'Ecstasy') on memory task acquisition. Sprague-Dawley rats were administered a binge dose (4 × 10 mg/kg) of MDMA and their ability to subsequently acquire the radial-arm maze task was compared against saline controls. The MDMA-treated rats were significantly slower to learn the task and made more reference memory errors than the controls. Working memory function was found to be relatively unimpaired. Following a reversal of task rules the MDMA-treated rats were again significantly slower to acquire the appropriate rule despite having eventually achieved a similar level of overall performance as control rats. However evidence of drug tolerance was found when all rats were challenged with an acute low dose of MDMA (1 × 4.0 mg/kg) because the binge MDMA rats were relatively less impaired. Therefore, although binge treated MDMA rats were able to achieve very accurate performance equivalent to the controls they took significantly longer to do this and were less able to adapt their behavior to a change in task rules. In addition the binge treated MDMA rats displayed tolerance to acute MDMA exposure. These findings are consistent with the possibility that human Ecstasy users may show deficits in acquiring information and may experience deficits in cognitive flexibility as well as developing tolerance to the drug with repeated exposure.  相似文献   

9.
Startle amplitude and startle stimulus-induced freezing (an index of fear) were measured in a standard acoustic startle response (ASR) paradigm in male Sprague-Dawley rats. Groups with electrolytic lesions to the lateral tegmental tract (LTG) or with axon-sparing lesions to the area around LTG made with the neurotoxin NMDA were compared with vehicle-injected or sham operated control groups on these response measures. Replicating previous results (Leaton & Brucato, 2001), electrolytic lesions to LTG significantly reduced freezing and produced a persistent 300% increase in ASR amplitude compared with all other groups. The NMDA lesions had no effect on freezing or on ASR amplitude compared with the controls. In additional testing the rats with electrolytic lesions to LTG did not differ from controls in the acquisition or retention of context freezing using a footshock unconditioned stimulus. The data made a small, but necessary, step in further clarifying two pathways that modify ASR. The source of the descending pathway that provides tonic inhibition of the sensory input to the ASR circuitry is not within the LTG. The ascending pathway that carries the fear-inducing dimensions of the acoustic stimulus to the amygdala by way of the medial geniculate nucleus does not have an intermediate synapse in the area within LTG.  相似文献   

10.
Birds were tested in an open-room radial maze with learned spatial locations that varied from trial to trial (working memory) and locations that remained spatially stable (reference memory). Three of the species, the Clark's nutcracker (Nucifraga columbiana), pinyon jay (Gymnorhinus cyanocephalus), and Western scrub jay (Aphelocoma coerulescens) store food to varying degrees. The other species, the Eurasian jackdaw (Corvus monedula) does not. Pinyon jays and scrub jays performed better than the nutcrackers and jackdaws in both working and reference memory components of the maze. The pinyon jay and jackdaw performed as would be expected on the basis of their natural history and previous research, but the scrub jay and nutcracker did not. Results are consistent with phylogenetic relationships among the 4 species, but could also be explained by differences in response strategies or interference in processing both types of memory components of the maze.  相似文献   

11.
Relating storage of specific information to a particular neuromorphological change is difficult because behavioral performance factors are not readily disambiguated from underlying cognitive processes. This issue is addressed here by demonstrating robust reorganization of the hippocampal mossy fiber terminal field (MFTF) when adult rats learn the location of a hidden platform but not when rats learn to locate a visible platform. Because the latter task requires essentially the same behavioral performance as the former, the observed MFTF growth is seen as the consequence of specific input-dependent hippocampal activity patterns selectively generated by processing of extramaze but not intramaze cues. Successful performance on the hidden platform task requires formation of spatial memory. Increased MFTFs in hidden platform-trained rats are observed 7 d but not 2 d after training nor in swim controls. These results suggest that structural plasticity of the mossy fiber:CA3 circuit may contribute to the maintenance of long-lasting memory but not to the initial storage of the spatial context.  相似文献   

12.
Bilateral electrolytic lesions in the pedunculopontine nucleus (PPN) impair acquisition of short-term, or concurrent, Taste Aversion Learning (TAL) in rats. This type of TAL is characterized by the daily presentation of two different flavor stimuli at the same time, one associated with simultaneous intragastric administration of an aversive product (hypertonic NaCl) and the other with physiological saline. Sham-lesioned control animals learn this taste discrimination task, but both lesioned animals and control animals learn a long-term, or delayed, TAL task in which each gustatory stimulus is presented individually every other day and the intragastric products, LiCl (0.15 M) and physiological saline, are administered after a 15-min delay. These results are analyzed in the context of the cerebellar circuits involved in learning and in relation to the two TAL modalities described above.  相似文献   

13.
Non-human animals, including great apes, have been suggested to share some of the skills for planning that humans commonly exhibit. A crucial difference between human and non-human planning may relate to the diversity of domains and needs in which this skill is expressed. Although great apes can save tools for future use, there is little evidence yet that they can also do so in other contexts. To investigate this question further, we presented the apes with a planning token-exchange task that differed from standard tool-use tasks. Additionally, we manipulated the future outcome of the task to investigate planning flexibility. In the Exchange condition, subjects had to collect, save and transport tokens because they would need them 30 min later to exchange them for food with a human, i.e., “bring-back” response. In the Release condition, the collection and transport of tokens were not needed as no exchange took place after 30 min. Out of 13 subjects, eight solved the task at least once in the Exchange condition, with chimpanzees appearing less successful than the other species. Importantly, three individuals showed a clear differential response between conditions by producing more “bring-back” responses in the Exchange than in the Release conditions. Those bonobo and orangutan individuals hence adapted their planning behavior according to changing needs (i.e., they brought tokens back significantly more often when they would need them). Bonobos and orangutans, unlike chimpanzees, planned outside the context of tool-use, thus challenging the idea that planning in these species is purely domain-specific.  相似文献   

14.
Waxman SR  Booth AE 《Cognition》2000,77(2):B33-B43
A controversial question is whether language acquisition is the result of domain-general or domain-specific principles. Focusing on word-learning, Markson and Bloom (Nature 385(6619) (1997) 813) recently argued that the ability to learn and retain new words (count nouns) is the result of abilities that are not specific to language. In the current experiment, we replicate their empirical finding, but challenge their domain-general interpretation by highlighting a crucial distinction between the principles involved in learning a count noun, as compared to learning a fact. The current results confirm that learning count nouns and facts involve (at least) two common components: establishing a mapping to a designated individual, and retaining this mapping over time. However, these results go further to document that the processes invoked in the acquisition of words differ from those invoked in the acquisition of facts. Children spontaneously and systematically extended a novel count noun exclusively to other members of the same category, but revealed no such systematicity when extending a fact. This illustrates that there are principles that are invoked in learning a novel count noun that are not invoked in learning a fact.  相似文献   

15.
Two experiments were conducted to determine whether consistent algorithmic response patterning on 8- and 10-arm versions of the radial maze is independent of spatial encoding. On the 8-arm version well-trained hooded rats were tested in darkness, after maze rotation that rendered room cues ambiguous with respect to arm positions, or with room cues unsystematically relocated. Ambiguous maze rotation was also used with well-trained subjects on the 10-arm version. If algorithmic patterning is a learned, non-spatial strategy, animals using it consistently ought not to have been affected by changes in the spatial layout of the test environment, and the type of pattern used by each subject would have remained constant. On the 8-arm radial maze, responses were most often made to arms 2 or 3 from that just visited. In many animals patterns were interchangeable, switching occurring between preferred angles of turn from day to day. Performance fell when animals were tested in darkness and upon ambiguous maze rotation early (but not later) in training. Testing in darkness increased the angle through which animals turned when responding, perhaps due to the disturbance of intramaze cue use. On the 10-arm maze the “consecutive arm” pattern was used persistently by several animals and appeared to protect their performance from disruption by ambiguous maze rotation. Animals not using rigid patterning were adversely affected. However, on both mazes animals using patterning correctly identified maze arms that had been omitted from otherwise patterned choice sequences. Animals adopted continuous patterning only when spatial encoding had been established. Response patterning appears to serve a mnemonic function and in rats complements rather than replaces the use of a spatial representation of the environment. It was concluded that a complex, flexible relationship exists between spatial functioning and its expression via motor responses.  相似文献   

16.
Impaired spinal-level neuromuscular control is suggested to contribute to instability and injury during dynamic landing tasks. Despite this suggestion, spinal-level neuromuscular control is yet to be examined during a horizontal jump-landing task. The aim of the current study was to assess changes in H-reflexes and its reliability at the short-latency response of landings from short and long distances. Eight healthy individuals (five male, three female; age, 22 ± 1.2 yrs; height, 178 ± 8.1 cm; weight, 72 ± 15.7 kg) participated in the study. H-reflexes were evoked at the SLR in the soleus and medial gastrocnemius muscles, during two landing conditions: 25% and 50% of maximal broad jump distance. H-reflexes were expressed relative to the background electromyography (EMG) and maximal M-wave responses (M-max). Soleus H-reflexes were inhibited when landing from shorter distance (25%, 13.9 ± 7.6%; 50%, 8.3 ± 6.5%; p < 0.01). No change in H-reflex excitability was observed in medial gastrocnemius. Background EMG was unaltered across landing conditions. Inhibition of soleus H-reflex excitability from 25% to 50% landing condition indicates a reduced contribution of Ia-afferent feedback to the alpha-motor neuron during landings from greater distances, which may contribute to stiffness regulation at the ankle joint. Unaltered H-reflex excitability of medial gastrocnemius is most likely attributed to its functional role during the landing task.  相似文献   

17.
18.
The automatic activation of phonological and orthographic information in auditory and visual word processing was examined using a task-set procedure. Participants engaged in a phonological task (i.e., determining whether the letter “a” in a word sounded like /e/ or /æ/) or an orthographic task (i.e., determining whether the sound /s/ in a word was spelled with an “s” or a “c”). Participants were cued regarding which task to perform simultaneously with, or 750 ms before, a clear or degraded target. The stimulus clarity effect (i.e., clear words responded to faster than degraded words) was absorbed into the time that it took participants to identify the task on the basis of the cue in a simultaneous cue–target as compared to a delayed cue–target condition, but only for the orthographic task. These data are consistent with the claim that prelexical processing occurs in a capacity-free manner upon stimulus presentation when participants are trying to extract orthographic codes from words presented in the visual and auditory modalities. Such affirmative data were not obtained when participants attempted to extract phonological codes from words, since here the effects of stimulus clarity and cue delay were additive.  相似文献   

19.
In Experiment 1 rats were required to learn a Y-maze in which reward was made available after a given response (e.g. a left turn) regardless of which arm was used as the start-box. Subjects with lesions of the caudate-putamen showed a deficit on this response-learning task compared with control subjects (unoperated animals and rats having lesions of the posterior cortex). In Experiment 2 rats with caudate-putamen lesions were unimpaired when the direction of the turn required to reach the correct goal-box (identified by means of a salient visual intra-maze cue) varied from trial to trial. In the absence of salient intramaze cues, but with enriched room (extra-maze) cues, the rats with caudate-putamen lesions were superior to controls on this task. It is argued that caudate-putamen lesions disrupt a mechanism responsible for processing information about responses, but that the other (spatial) mechanisms responsible for maze-learning remain intact and that caudate-putamen lesions may enhance performance on spatial tasks for which information about responses is irrelevant.  相似文献   

20.
The Stroop color-naming task is one of the most widely studied tasks involving the inhibition of a prepotent response, regarded as an executive function. Several studies have examined performance on versions of the Stroop task under conditions of acute sleep deprivation. Though these studies revealed effects on Stroop performance, the results often do not differentiate between general effects of sleep deprivation on performance and effects specifically on interference in the Stroop task. To examine the effect of prolonged wakefulness on performance on the Stroop task, we studied participants in a 40-h "constant routine" protocol during which they remained awake in constant conditions and performed a Stroop color-naming task every two hours. We found that reaction time was slowest when the color and word did not match (incongruent), fastest when the color and word did match (congruent), and intermediate when participants named the color of the non-word stimulus (neutral). Performance on all three trial types degraded significantly as a function of time awake. Extended wakefulness did not significantly change the additional time needed to respond when the color and word did not match (Stroop interference), nor did it change the amount of facilitation when color and word matched. These results indicate that one night of sleep deprivation influences performance on the Stroop task by an overall increase in response time, but does not appear to impact the underlying processes of interference or facilitation. The results suggest that the degree to which an "executive function" is affected by sleep deprivation may depend on the particular executive function studied and the degree to which it is subserved by the prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号