首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Researchers have suggested that visual feedback not only plays a role in the correction of errors during movement execution but that visual feedback from a completed movement is processed offline to improve programming on upcoming trials. In the present study, we examined the potential contribution of online and offline processing of visual feedback by analysing spatial variability at various kinematic landmarks in the limb trajectory (peak acceleration, peak velocity, peak negative acceleration and movement end). Participants performed a single degree of freedom video aiming task with and without vision of the cursor under four criterion movement times (225, 300, 375 and 450 ms). For movement times of 225 and 300 ms, the full vision condition was less variable than the no vision condition. However, the form of the variability profiles did not differ between visual conditions suggesting that the contribution of visual feedback was due to offline processes. In the 375 and 450 ms conditions, there was evidence for both online and offline control as the form of the variability profiles differed significantly between visual conditions.  相似文献   

2.
Recent studies have shown the importance of visual feedback during the rapid initial phase of aiming movements for the control of direction (e.g., Bard, Paillard, Fleury, Hay, & Larue, 1990; Blouin, Teasdale, Bard, & Fleury, in press; Teasdale, Blouin, Bard, & Fleury, 1991). In most of these studies, visual feedback conditions were presented in blocked sessions. Consequently, higher-order processes (e.g., feedforward and/or learning processes), along with on-line processing of visual feedback, might have contributed to the better accuracy found when subjects had visual feedback of only the initial portion of the movements (compared with movements without visual feedback). To test this possibility, we studied subjects' performance of rapid arm movements under different types of presentation (random, precued, and blocked) of the visual feedback conditions of the trajectory (no vision, initial portion only, and vision of the entire trajectory). Directional errors were larger in the no-vision condition than in both conditions with visual feedback. There were no differences among the presentation conditions, suggesting that on-line processing of visual information contributed to the control of the arm movements.  相似文献   

3.
The effects of correct and transformed visual feedback on rhythmic unimanual visuo-motor tracking were examined, focusing on tracking performance (accuracy and stability) and visual search behavior. Twelve participants (reduced to 9 in the analyses) manually tracked an oscillating visual target signal in phase (by moving the hand in the same direction as the target signal) and in antiphase (by moving the hand in the opposite direction), while the frequency of the target signal was gradually increased to probe pattern stability. Besides a control condition without feedback, correct feedback (representing the actual hand movement) or mirrored feedback (representing the hand movement transformed by 180 degrees) were provided during tracking, resulting in either in-phase or antiphase visual motion of the target and feedback signal, depending on the tracking mode performed. The quality (accuracy and stability) of in-phase tracking was hardly affected by the two forms of feedback, whereas antiphase tracking clearly benefited from mirrored feedback but not from correct feedback. This finding extends previous results indicating that the performance of visuo-motor coordination tasks is aided by visual feedback manipulations resulting in coherently grouped (i.e., in-phase) visual motion structures. Further insights into visuo-motor tracking with and without feedback were garnered from the visual search patterns accompanying task performance. Smooth pursuit eye movements only occurred at lower oscillation frequencies and prevailed during in-phase tracking and when target and feedback signal moved in phase. At higher frequencies, point-of-gaze was fixated at a location that depended on the feedback provided and the resulting visual motion structures. During in-phase tracking the mirrored feedback was ignored, which explains why performance was not affected in this condition. Point-of-gaze fixations at one of the end-points were accompanied by reduced motor variability at this location, reflecting a form of visuo-motor anchoring that may support the pick up of discrete information as well as the control of hand movements to a desired location.  相似文献   

4.
This experiment examined whether rapid arm movements can be corrected in response to a change in target position that occurs just prior to movement onset, during saccadic suppression of displacement. Because the threshold of retinal input reaches its highest magnitude at that time, displacement of the visual target of a saccade is not perceived. Subjects (N = 6) were instructed to perform very rapid arm movements toward visual targets located 16, 20, and 24 degrees from midline (on average, movement time was 208 ms). On some trials the 20 degrees target was displaced 4 degrees either to the right or to the left during saccadic suppression. For double-step trials, arm movements did not deviate from their original trajectory. Movement endpoints and movement structure (i.e., velocity-and acceleration-time profiles) were similar whether or not target displacements occurred, showing the failure of proprioceptive signals or internal feedback loops to correct the arm trajectory. Following this movement, terminal spatially oriented movements corrected the direction of the initial movement (as compared with the single-step control trials) when the target eccentricity decreased by 4 degrees. Subjects were unaware of these spatial corrections. Therefore, spatial corrections of hand position were driven by the goal level of the task, which was updated by oculomotor corrective responses when a target shift occurred.  相似文献   

5.
J K Graham  M F Bradshaw  A Davis 《Perception》1998,27(11):1379-1387
In adults, the introduction of a pre-response delay has been shown to affect accuracy in pointing tasks while leaving accuracy in perceptual matching tasks unaffected. Here, we report on the effect of pre-movement delays on pointing accuracy in 6-10-year-old children. Children of this age group are of particular interest as their reliance on visual cues to monitor and correct their reaches appears to change during this period of development. Nineteen children were asked to point to the location of a target light after a delay of 0, 1, 2, or 4 s following target extinction. Performance was measured in two conditions: (i) open-loop, where the child reproduced the target locations in complete darkness, and (ii) with visual feedback, where information about hand position was available. Errors in the direction and in the amplitude of each reaching movement were recorded separately. The results show that temporal delay significantly affects the pointing movements of these children. Accuracy (mean) deteriorated after only 1 s whereas the precision (standard deviation) of the responses deteriorated after 4 s. Errors in amplitude, but not errors in direction, were reduced by the provision of visual feedback. Taken together, the findings suggest that amplitude and directional components of pointing in childhood utilise different sources of information, which differ in the extent to which temporal constraints operate.  相似文献   

6.
Visual feedback that provides error information is critical to task quality and motor adjustments. This study investigated how the size of perceived errors via visual feedback affected rate control and force gradation strategy of a designate force task. Fourteen young adults coupled force exertions to a compound sinusoidal signal (0.2 Hz and 0.5 Hz) that fluctuated around a mean level of 30% of maximal voluntary contraction, when the size of execution errors were differently scaled with the error amplification factors. In the low (LAF) and high (HAF) amplification factor conditions, the execution errors in the visual display half and double of the real errors, respectively. The visualized error was the real errors in the medium amplification factor (MAF) condition. In addition to a phase-lead of force output, the LAF condition that virtually reduced the size of error feedback associated with a poorer task accuracy than the MAF and HAF conditions. Virtual increase in error size of visual feedback selectively suppressed the fast target force at 0.5 Hz. In addition, complexity and high-frequency components (>0.75 Hz) of force outputs multiplied progressively with increasing error size. Error-enhancing feedback suppressed fast target force, accentuating the use of error information to tune force output, whereas error-reducing feedback enhanced fast target force in favor of predictive force control.  相似文献   

7.
The goal of this study was to determine whether a sensorimotor or cognitive encoding is used to encode a target position and save it into iconic memory. The methodology consisted of disrupting a manual aiming movement to a memorized visual target by displacing the visual field containing the target. The nature of the encoding was inferred from the nature and the size of the errors relative to a control. The target was presented either centrally or in the right periphery. Participants moved their hand from the left to the right of fixation. Black and white vertical stripes covered the whole visual field. The visual field was either stationary throughout the trial or was displaced to the right or left at the extinction of the target or at the start of the hand movement. In the latter case, the displacement of the visual field obviously could only be taken into account by the participant during the gesture. In this condition, our hypothesis was that the aiming error would follow the direction of visual field displacement. Results showed three major effects: (1) Vision of the hand during the gesture improved the final accuracy; (2) visual field displacement produced an underestimation of the target distance only when the hand was not visible during the gesture and was always in the same direction displacement; and (3) the effect of the stationary structured visual field on aiming precision when the hand was not visible depended on the distance to the target. These results suggest that a stationary structured visual field is used to support the memory of the target position. The structured visual field is more critical when the hand is not visible and when the target appears in peripheral rather than central vision. This suggests that aiming depends on memory of the relative peripheral position of the target (allocentric reference). However, in the present task, cognitive encoding does not maintain the "position" of the target in memory without reference to the environment. The systematic effect of the visual field displacement on the manual aiming suggests that the role of environmental reference frames in memory for position is not well understood. Some studies, in particular those of Giesbrecht and Dixon (1999) and Glover and Dixon (2001), suggested differing roles of the environment in the retention of the target position and the control of aiming movements toward the target. The present observations contribute to understanding the mechanism involved in locating and grasping objects with the hand.  相似文献   

8.
The right hand advantage has been thought to arise from the greater efficiency of the right hand/left hemisphere system in processing visual feedback information. This hypothesis was examined using kinematic analyses of aiming performance, focusing particularly on time after peak velocity which has been shown to be sensitive to visual feedback processing demands. Eight right-handed subjects pointed at two targets with their left and right hands with or without vision available and either as accurately or as fast as possible. Pointing errors and movement time were found to be smaller with the right hand. Analyses of the temporal componenets of movement time revealed that the hands differed only in time after peak velocity (in deceleration), with the right hand spending significantly less time. This advantage for the right hand, however, was apparent whether or not vision was available and only when accuracy was emphasized in performance. These findings suggest that the right hand system may be more efficient at processing feedback information whether this be visual or nonvisual (e.g., proprioceptive).  相似文献   

9.
An active kinesthetic-to-visual matching task was performed by 15 children aged 5-10 years and five young adults. The task required the participants to locate the target visually while performing center-out drawing movements to the located visual targets in the absence of visual feedback of hand/pen motion. Movement time (MT), terminal end-point position error (EPE), and initial directional error (IDE) were measured. The general finding is that the end-point error variability, representing the joint localization probability distributions for proprioceptive localization of the hand and visual localization of the target, was largest for the youngest children, but did not differ from one another for the older age groups. The localization distributions, as characterized by principal component analysis, showed that both errors in extent and direction were significantly larger in the youngest children. These error distributions could not be accounted for by initial localization errors prior to movement onset in the children. It is likely that at least some portion of the increased movement variability seen during sensorimotor development in young children can be attributed not only to immature control mechanisms per se, but also to partial, not yet stable, forward representations for hand localization which are used for movement perception, planning, and control.  相似文献   

10.
Getzmann S  Lewald J  Guski R 《Perception》2004,33(5):591-599
The final position of a moving visual object usually appears to be displaced in the direction of motion. We investigated this phenomenon, termed representational momentum, in the auditory modality. In a dark anechoic environment, an acoustic target (continuous noise or noise pulses) moved from left to right or from right to left along the frontal horizontal plane. Listeners judged the final position of the target using a hand pointer. Target velocity was 8 degrees s(-1) or 16 degrees s(-1). Generally, the final target positions were localised as displaced in the direction of motion. With presentation of continuous noise, target velocity had a strong influence on mean displacement: displacements were stronger with lower velocity. No influence of sound velocity on displacement was found with motion of pulsed noise. Although these findings suggest that the underlying mechanisms may be different in the auditory and visual modality, the occurrence of displacements indicates that representational-momentum-like effects are not restricted to the visual modality, but may reflect a general phenomenon with judgments of dynamic events.  相似文献   

11.
Rieger M  Martinez F  Wenke D 《Cognition》2011,121(2):163-175
Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we manipulated correction instructions (whether or not to correct errors) and controlled for visual feedback in executed typing (letters appearing on the screen or not). Participants executed and imagined typing proverbs of different lengths. Errors and error corrections explained a significant amount of variance of execution minus imagination differences in Experiment 1, and in Experiment 2 when participants were instructed to correct errors, but not when participants were instructed not to correct errors. In Experiment 2 participants corrected and reported more errors with than without visual feedback. However, the relation between execution − imagination duration differences and errors and error corrections was unaffected by visual feedback. The types of errors reported less often in imagination than in execution were related to processes in typing execution. We conclude that errors and error corrections are not spontaneously imagined during motor imagery, and that even when attention is drawn to their occurrence only some are imagined. This may be due to forward models not predicting all aspects of an action, imprecise forward models, or a neglect of monitoring error signals during motor imagery.  相似文献   

12.
The reaction times (RTs), movement times (MTs), and final accuracy of hand movements directed towards visual goals were measured in 6-, 8-, and 10-year-old children, using tasks in which direction and amplitude components of movement were distinctly required. The tasks were performed with and without visual feedback of the limb. RTs decreased with age, and were shorter in directional than in amplitude task, in all ages. MTs were the longest at age 8 in both tasks, equally short at ages 6 and 10 in the directional task, the shortest at age 10, and intermediate at age 6, when amplitude had to be regulated. In the amplitude task, the target distance generally affected MTs under both visual conditions, but to a lower degree at age 10 than in the two younger groups. Movement accuracy, which was in all cases higher with visual feedback, showed different developmental trends among the two spatial components: directional accuracy was not different among the three groups of age, whereas amplitude accuracy showed a nonmonotonic development in the nonvisual condition, with an increase between age 6 and age 10, and the lowest level at age 8. In the visual condition, amplitude accuracy did not change with age. The specification of direction seems therefore to predominantly load the preparatory stage of the response. Amplitude specification seems to be more dependent on on-going regulations and to undergo a longer and more complex development, with a critical period around age 8 when a greater propensity for a feedback-based control appears on the two components. With increasing age, amplitude tends to be specific to a greater extent by a feedforward process.  相似文献   

13.
Children aged 6 to 10 were tested on their ability to move accurately and to perceptually evaluate their motor response. Subjects performed a directional and an amplitude visuo-manual aiming task without vision of their moving limb. They were asked to correct their error, after completion of their movements, only if they felt they were not accurate. Terminal aiming errors and correction responses (adjustments) were analyzed, and threshold detection was determined relative to terminal aiming error. Action accuracy and evaluation of action accuracy are two abilities that do not develop synchronously. Moreover, the relationship between these abilities depends on whether accuracy and direction or amplitude are required. Amplitude undergoes more corrections than direction, suggesting that the spatial system of reference involved depends more upon the coding of the final position than on direction. Two spatial comparators, operating on the basis of two types of evaluation, seem to have a variably distinct contribution to movement and perception accuracy, according to age.  相似文献   

14.
Children aged 6 to 10 were tested on their ability to move accurately and to perceptually evaluate their motor response. Subjects performed a directional and an amplitude visuo-manual aiming task without vision of their moving limb. They were asked to correct their error, after completion of their movements, only if they felt they were not accurate. Terminal aiming errors and correction responses (adjustments) were analyzed, and threshold detection was determined relative to terminal aiming error. Action accuracy and evaluation of action accuracy are two abilities that do not develop synchronously. Moreover, the relationship between these abilities depends on whether accuracy and direction or amplitude are required. Amplitude undergoes more corrections than direction, suggesting that the spatial system of reference involved depends more upon the coding of the final position than on direction. Two spatial comparators, operating on the basis of two types of evaluation, seem to have a variably distinct contribution to movement and perception accuracy, according to age.  相似文献   

15.
According to the contingent involuntary orienting hypothesis, only stimuli that match the attentional control settings based on intentions capture attention. In contrast, the surprise-capture hypothesis states that expectancy-discrepant stimuli can capture attention even if they do not match the control settings, implying unintended capture. The purpose of this study is to investigate whether unintended and intended attentional shifts are characterized by different time courses, indicating different underlying mechanisms. An unintended attentional shift was tested by the first, unannounced presentation of a color singleton at the location of a visual search target, and intended shifts by the following repeated presentations of a predictive singleton. Differences in time course were revealed by varying the stimulus onset asynchrony (SOA) between singleton and target. Results showed that accuracy with expected singletons was barely affected by SOA, whereas SOA strongly affected accuracy with the unexpected singleton. The results are interpreted as supporting the surprise-capture hypothesis. It is furthermore argued that a division of labor between contingent capture and surprise in the control of attention supports adaptive behavior.  相似文献   

16.
The accuracy of movements of the arm directed toward a point in space was investigated in healthy human subjects. To study the influence of the eye movement itself, on the guidance of the arm in the absence of any visual context, subjects performed the goal-directed arm movements without visual feedback about the arm displacement and the target position. The subjects were asked either to keep their eyes centered or oriented toward a previously flashed target. The analysis of the distribution of the errors in arm final position in the two conditions suggests that the eye movement influences the final position adopted by the arm. It is postulated that an interaction exists between the eye and arm systems during the motor program elaboration phase.  相似文献   

17.
Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors – the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.  相似文献   

18.
The issues addressed in 2 experiments in which 10 younger and 10 older adults participated were (a) whether the retention of a target location in memory for motor control purposes would be facilitated by an increase in target presentation time; (b) whether increasing the recall delay since the last exposure to the target would have deleterious effects on aiming accuracy or variability, or both; and (c) whether those effects would be mediated by aging. The results revealed that there is a short-lived (< 1 s) visual representation of target location. In addition, the results suggested that the nature of that representation dictates a movement strategy favoring higher peak movement velocity. None of the effects reported in the present study was affected by age, suggesting that the coding and retrieving processes of target location in memory for motor control purposes are not affected by age.  相似文献   

19.
The issues addressed in 2 experiments in which 10 younger and 10 older adults participated were (a) whether the retention of a target location in memory for motor control purposes would be facilitated by an increase in target presentation time; (b) whether increasing the recall delay since the last exposure to the target would have deleterious effects on aiming accuracy or variability, or both; and (c) whether those effects would be mediated by aging. The results revealed that there is a short-lived (< 1 s) visual representation of target location. In addition, the results suggested that the nature of that representation dictates a movement strategy favoring higher peak movement velocity. None of the effects reported in the present study was affected by age, suggesting that the coding and retrieving processes of target location in memory for motor control purposes are not affected by age.  相似文献   

20.
We confirm Craik's (1947) observation that the human manual1y tracking a visual target behaves like an intermittent servo-control1er. Such tracking responses are indicative of "sampled" negative-feedback control but could be the result of other, continuous, mechanisms. Tracking performance therefore was recorded in a task in which visual feedback of the position of the hand-held joystick could be eliminated. Depriving the subjects of visual feedback led to smoother tracking and greatly reduced the signal power of their responses between 0.5-1.8 Hz. Their responses remained intermittent when they used feedback of their own position but not of the target to track a remembered (virtual) target. Hence, intermittency in tracking behavior is not exclusively a signature of visual feedback control but also may be a sign of feedback to memorized waveforms. Craik's (1947) suggestion that the intermittency is due to a refractory period following each movement was also tested. The errors measured at the start of each intermittent response, during tracking of slow waveforms, showed evidence of a small error deadzone (measuring 0.7 cm on the VDU screen or 0.80 degrees at the eye). At higher target speeds, however, the mean size of starting errors increased, and the upper boundary of the distribution of starting error was close to that expected of a refractory delay of approximately 170 ms between responses. We consider a model of the control system that can fit these results by incorporating an error deadzone within a feedback control loop. We therefore propose that the initiation of intermittent tracking responses may be limited by a positional error deadzone and that evidence for a refractory period between successive corrective movements can be satisfied without evoking an explicit timing or sampling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号