首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The current study examined the effects of temporary inactivation of the DH on freezing, rearing, ambulating, grooming, and whisking behavior in an explicitly nonspatial contextual fear conditioning paradigm in which olfactory stimuli served as temporally and spatially diffuse contexts. Prior either to training, testing, or both, male Sprague–Dawley rats received bilateral microinfusions of saline or the GABAA agonist muscimol into the DH. Results indicate that temporary inactivation of DH produced both anterograde and retrograde deficits in contextually conditioned freezing, while sparing the acquisition and expression of freezing to a discrete auditory or olfactory CS. These data suggest that there is a decidedly nonspatial component to the role of DH in contextual conditioning, and that olfactory contextual conditioning is a fruitful means of further exploring this function.  相似文献   

2.
The hippocampus has been suggested to be involved in spatial (or configural) memory and also in the inhibition of certain response or goal alternatives. An increasing number of anatomical, physiological, and behavioral studies indicate that the hippocampus is functionally heterogeneous along the dorsal-ventral axis. Identification of distinct behavioral roles for the dorsal (DH) and ventral (VH) hippocampus may resolve differences between the various theoretical accounts of hippocampal function. The present study examined the effects of electrolytic lesions restricted to the DH or VH on fear-conditioned freezing, passive avoidance on the elevated T-maze (ETM) test of anxiety, and general activity in male Sprague-Dawley (Charles-River derived) albino rats. We found that rats with lesions of the VH, but not DH showed reduced freezing to both context and tone conditioned stimuli (CS). Rats with VH lesions also showed a reduced latency to emerge from the enclosed arm on trials 2 and 3 of the ETM (indicating reduced anxious behavior), while having no effect on the latency to escape from the open arms on trial 4. There were no differences in activity between the groups. These results indicate that the VH and DH are differentially involved in passive avoidance on the ETM and conditioned freezing to context and tone CS. We suggest that the VH may be specifically involved in modulating goal-oriented, defensive behavior expression through hypothalamic and amygdaloid connections.  相似文献   

3.
There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.  相似文献   

4.
Olfactory working memory and pattern separation for odor information was assessed in male rats using a matching-to-sample for odors paradigm. The odor set consisted of a five aliphatic acids with unbranched carbon chains that varied from two- to six-carbons in length. Each trial consisted of a sample phase followed by a choice phase. During the sample phase, rats would receive one of five different odors. Fifteen seconds later during the choice phase one of the previous odors was presented simultaneously side by side with a different odor that was based on the number of aliphatic acids that varied in the carbon chains from two- to six-carbons in length and rats were allowed to choose between the two odors. The rule to be learned in order to receive a food reward was to always choose the odor that occurred during the study phase. Odor separations of 1, 2, 3 or 4 were selected for each choice phase and represented the carbon chain difference between the study phase odor and the test phase odor. Once an animal reached a criterion of 80–90% correct across all temporal separations based on 40 trials, rats received a control, dorsal hippocampal, or ventral hippocampal lesion and were retested on the task. On postoperative trials, only the ventral hippocampal lesion group was impaired relative to both control and dorsal hippocampal groups groups. There were no effects on odor pattern separation. All groups of rats could discriminate between the odors. The data suggest that the ventral hippocampus, but not dorsal hippocampus, supports working memory for odor information.  相似文献   

5.
It is unclear whether protein phosphatases, which counteract the actions of protein kinases, play a beneficial role in the formation and extinction of previously acquired fear memories. In this study, we investigated the role of the calcium/calmodulin dependent phosphatase 2B, also known as calcineurin (CaN) in the formation of contextual fear memory and extinction of previously acquired contextual fear. We used a temporally regulated transgenic approach, that allowed us to selectively inhibit neuronal CaN activity in the forebrain either during conditioning or only during extinction training leaving the conditioning undisturbed. Reducing CaN activity through the expression of a CaN inhibitor facilitated contextual fear conditioning, while it impaired the extinction of previously formed contextual fear memory. These findings give the first genetic evidence that neuronal CaN plays an opposite role in the formation of contextual fear memories and the extinction of previously formed contextual fear memories.  相似文献   

6.
Although it is well documented that fear responses develop following aversive Pavlovian conditioning, it is unclear whether fear learning also manifests in the form of attentional biases for fear-related stimuli. Boschen, Parker, and Neumann (Boschen, M. J., Parker, I., & Neumann, D. L. (2007). Changes in implicit associations do not occur simultaneously to Pavlovian conditioning of physiological anxiety responses. Journal of Anxiety Disorders, 21, 788-803.) showed that despite the acquisition of differential skin conductance conditioned responses to angry faces paired (CS+) and unpaired (CS−) with an aversive shock, development of implicit associations was not subsequently observed on the Implicit Association Test. In the present study, participants (N = 76) were assigned either to a Shock or NoShock group and completed a similar aversive Pavlovian conditioning procedure with angry face CS+ and CS− stimuli. Participants next completed a visual probe task in which the angry face CS+ and CS− stimuli were paired with angry face control stimuli and neutral faces. Results confirmed that differential fear conditioning was observed in the Shock group but not in the NoShock group, and that the Shock group subsequently showed a selective attentional bias for the angry face CS+ compared with the CS− and control stimuli during the visual probe task. The findings confirm the interplay between learning-based mechanisms and cognitive processes, such as attentional biases, in models of fear acquisition and have implications for treatment of the anxiety disorders.  相似文献   

7.
Auditory fear conditioning is one of the most well characterized models used in studies of learning and memory. In order to ensure the animals have been conditioned to fear the auditory stimulus, animals are generally tested for their response to this stimulus in a different context to that used for training. For this reason it is often unclear how much contextual fear conditioning the animals also acquire when they are trained. In this study, we have established a protocol for fear conditioning in mice which is explicit for auditory cues; mice trained using this protocol, show a very low fear response to contextual cues encountered during training. We have undertaken analysis to look for potential brain changes associated with this model by measuring levels of the synaptic vesicle protein, synaptophysin, in the basolateral nuclei of the amygdala following auditory fear conditioning. Our results show levels of synaptophysin were significantly higher in mice which learnt to associate the auditory stimulus with fear, in comparison to all non-learning control animals. These findings support the idea that synaptic plasticity associated with formation of fear conditioning to a single specific conditioned stimulus occurs within the basolateral nuclei of the amygdala. Furthermore, our results demonstrate the usefulness of this model in looking for changes in the brain specific for a defined learning event.  相似文献   

8.
In four experiments the effects of serial compound conditioning on responding to a trace-conditioned CS were evaluated using a fear conditioning paradigm. The subjects were 18- and 25-day-old Sprague-Dawley rats, previously shown to exhibit little or no trace fear conditioning. Here, animals as young as 18 days of age were shown to be capable of trace conditioning between a visual CS1 and a shock US, provided the trace interval was filled with a non-target CS2 during serial conditioning trials (CS1-->CS2-->US). To explore cholinergic mechanisms involved in trace and serial conditioning, additional experiments assessed conditioned responding following pre-training administration of the muscarinic receptor antagonist scopolamine. Scopolamine produced a dose-dependent reduction in responding to the trace CS1, regardless of whether subjects were trained with standard trace (CS1-->trace interval-->US) or serial (CS1-->CS2-->US) trials. Responding to CS2 was unaffected by scopolamine. These data suggest that central cholinergic systems are functional in the young animals, but are not normally sufficiently activated by standard trace conditioning procedures. The results suggest that serial compound conditioning can promote trace conditioning in young rats, as it does in adults, perhaps by enhancing cholinergic activity during training. Implications for the late ontogenetic emergence of trace conditioning as it relates to maturation of neural pathways and their role in the potentiating effects of a gap filler are discussed.  相似文献   

9.
Renewal gives an experimental model for the relapse of fear symptoms following exposure therapy. While renewal of extinguished fear in humans has been observed following a return to the original context in which fear was acquired (ABA design), it has been more difficult to show upon presentation of a novel context (ABC design). The present experiment used a particularly strong context manipulation in a fear conditioning procedure. Context was manipulated by using large photographs of real environments taken from various angles and was present throughout the entire experiment. A renewal of cognitive expectancy was found in both ABA and ABC renewal designs, although it was larger in the former than in the latter. Response times in making the expectancy judgments increased when there was a change to a new context. The results demonstrate consistency in fear renewal effects between human and animal studies and suggest that relapse following exposure therapy via renewal remains a danger when people encounter a previously feared object in a novel context.  相似文献   

10.
Despite the role afforded interoceptive fear conditioning in etiologic accounts of panic disorder, there are no good experimental demonstrations of such learning in humans. The aim of the present study was to evaluate the interoceptive conditioning account using 20% carbon dioxide (CO(2))-enriched air as an interoceptive conditioned stimulus (CS) (i.e., physiologically inert 5-s exposures) and unconditioned stimulus (US) (i.e., physiologically prepotent 15-s exposures). Healthy participants (N=42) were randomly assigned to one of three conditions: a CS-only, contingent CS-US pairings, or unpaired/non-contingent CS and US presentations. Electrodermal and self-report (e.g., distress, fear) served as indices of conditioned emotional responding. Results showed greater magnitude electrodermal and evaluative fear conditioning in the paired relative to the CS-only condition. The explicitly unpaired condition showed even greater electrodermal and evaluative responding during acquisition, and marked resistance to extinction. The latter results are consistent with the possibility that the unpaired procedure constituted a partial reinforcement procedure in which CO(2) onset was paired with more extended CO(2) exposure on 50% of the trials. Overall, the findings are consistent with contemporary learning theory accounts of panic.  相似文献   

11.
Glucocorticoid receptor activation within the basolateral amygdala (BLA) during fear conditioning may mediate enhancement in rats chronically exposed to stress levels of corticosterone. Male Sprague-Dawley rats received corticosterone (400 microg/ml) in their drinking water (days 1-21), a manipulation that was previously shown to cause hippocampal CA3 dendritic retraction. Subsequently, rats were adapted to the fear conditioning chamber (day 22), then trained (day 23), and tested for conditioned fear to context and tone (day 25). Training consisted of two tone (20s) and footshock (500 ms, 0.25 mA) pairings. In Experiment 1, muscimol (4.4 nmol/0.5 microl/side), a GABAergic agonist, was microinfused to temporarily inactivate the BLA during training. Rats given chronic corticosterone showed enhanced freezing to context, but not tone, compared to vehicle-supplemented rats. Moreover, BLA inactivation impaired contextual and tone conditioning, regardless of corticosterone treatment. In Experiment 2, RU486 (0, 0.3, and 3.0 ng/0.2 microl/side) was infused on training day to antagonize glucocorticoid receptors in the BLA. Corticosterone treatment enhanced fear conditioning to context and tone when analyzed together, but not separately. Moreover, RU486 (3.0 ng/side) selectively exacerbated freezing to context in chronic corticosterone-exposed rats only, but failed to alter tone conditioning. Serum corticosterone levels were negatively correlated with contextual, not tone, conditioning. Altogether, these suggest that chronic corticosterone influences fear conditioning differently than chronic stress as shown previously. Moreover, chronic exposure to corticosteroids alters BLA functioning in a non-linear fashion and that contextual conditioning is influenced more than tone conditioning by chronic corticosterone and BLA glucocorticoid receptor stimulation.  相似文献   

12.
Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial compartmentalization of PKA signaling is mediated by A-kinase anchoring proteins (AKAPs). Here, we investigated the role of PKA anchoring to AKAPs in different stages of the memory process (acquisition, consolidation, retrieval and extinction) using contextual fear conditioning, a hippocampus-dependent learning task. Mice were injected intracerebroventricularly or intrahippocampally with the membrane permeable PKA anchoring disrupting peptides St-Ht31 or St-superAKAP-IS at different time points during the memory process. Blocking PKA anchoring to AKAPs resulted in an impairment of fear memory consolidation. Moreover, disrupted PKA anchoring promoted contextual fear extinction in the mouse hippocampus. We conclude that the temporal and spatial compartmentalization of hippocampal PKA signaling pathways, as achieved by anchoring of PKA to AKAPs, is specifically instrumental in long-term contextual fear memory consolidation and extinction, but not in acquisition and retrieval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号