首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Previous work investigating the strategies that observers use to intercept moving targets has shown that observers maintain a constant target-heading angle (CTHA) to achieve interception. Most of this work has concluded or indirectly assumed that vision is necessary to do this. We investigated whether blindfolded pursuers chasing a ball carrier holding a beeping football would utilize the same strategy that sighted observers use to chase a ball carrier. Results confirm that both blindfolded and sighted pursuers use a CTHA strategy in order to intercept targets, whether jogging or walking and irrespective of football experience and path and speed deviations of the ball carrier during the course of the pursuit. This work shows that the mechanisms involved in intercepting moving targets may be designed to use different sensory mechanisms in order to drive behavior that leads to the same end result. This has potential implications for the supramodal representation of motion perception in the human brain.  相似文献   

2.
In visual search, items defined by a unique feature are found easily and efficiently. Search for a moving target among stationary distractors is one such efficient search. Search for a stationary target among moving distractors is markedly more difficult. In the experiments reported here, we confirm this finding and further show that searches for a stationary target within a structured flow field are more efficient than searches for stationary targets among distractors moving in random directions. The structured motion fields tested included uniform direction of motion, a radial flow field simulating observer forward motion, and a deformation flow field inconsistent with observer motion. The results using optic flow stimuli were not significantly different from the results obtained with other structured fields of distractors. The results suggest that the local properties of the flow fields rather than global optic flow properties are important for determining the efficiency of search for a stationary target.  相似文献   

3.
Visual search asymmetries in motion and optic flow fields.   总被引:1,自引:0,他引:1  
In visual search, items defined by a unique feature are found easily and efficiently. Search for a moving target among stationary distractors is one such efficient search. Search for a stationary target among moving distractors is markedly more difficult. In the experiments reported here, we confirm this finding and further show that searches for a stationary target within a structured flow field are more efficient than searches for stationary targets among distractors moving in random directions. The structured motion fields tested included uniform direction of motion, a radial flow field simulating observer forward motion, and a deformation flow field inconsistent with observer motion. The results using optic flow stimuli were not significantly different from the results obtained with other structured fields of distractors. The results suggest that the local properties of the flow fields rather than global optic flow properties are important for determining the efficiency of search for a stationary target.  相似文献   

4.
The purpose of this study was to test whether a constant bearing angle strategy could account for the displacement regulations produced by a moving observer when attempting to intercept a ball following a curvilinear path. The participants were asked to walk through a virtual environment and to change, if (deemed) necessary, their walking speed so as to intercept a moving ball that followed either a rectilinear or a curvilinear path. The results showed that ball path curvature did indeed influence the participants' displacement kinematics in a way that was predicted by adherence to a constant bearing angle strategy mode of control. Velocity modifications were found to be proportional to the magnitude of target curvature with opposing curvatures giving rise to mirror displacement velocity changes. The role of prospective strategies in the control of interceptive action is discussed.  相似文献   

5.
T Heckmann  I P Howard 《Perception》1991,20(3):285-305
Induced motion (IM) is illusory motion of a stationary test target opposite to the direction of the real motion of the inducing stimulus. We define egocentric IM as an apparent motion of the test target relative to the observer, and vection-entrained IM as an apparent motion of a stationary object along with an apparent motion of the self (vection) induced by the same stimulus. These two forms of IM are often confounded, and tests for distinguishing between them have not been devised. We have devised such tests. Our test for egocentric IM relies on evidence that this form of IM is due mainly to a misregistration of eye movements when optokinetic nystagmus (OKN) is inhibited, and on evidence that OKN is evoked only by stimuli in the plane of convergence. Our test for vection-entrained IM relies on evidence that vection is evoked only by the more distant of two superimposed inducing stimuli. Thus we found egocentric IM to be induced without vection or vection-entrained IM when subjects converged on a foreground moving display with a stationary display in the background, and vection-entrained IM to be induced without egocentric IM when subjects converged on a stationary-foreground display with a moving display in the background. The two types of IM were evoked in opposite directions at the same time when subjects converged on a foreground moving display while a background display moved in the opposite direction. The two forms of IM showed no signs of interaction, and we conclude that they rely on independent motion mechanisms that operate within distinct frames of reference. A control experiment suggested that the depth adjacency effect in IM is determined by the depth adjacency of the inducing stimulus to convergence, not just to the test target.  相似文献   

6.
When trying to move in a straight line to a target, participants produce movement paths that are slightly (but systematically) curved. Is this because perceived space is curved, or because the direction to the target is systematically misjudged? We used a simple model to investigate whether continuous use of an incorrect judgement of the direction to the target could explain the curvature. The model predicted the asymmetries that were found experimentally when moving across a background of radiating lines (the Hering illusion). The magnitude of the curvature in participants' movements was correlated with their sensitivity to the illusion when judging a moving dot's path, but not with their sensitivity when judging the straightness of a line. We conclude that a misjudgement of direction causes participants to perceive a straight path of a moving dot as curved and to produce curved movement paths.  相似文献   

7.
Under many circumstances, humans do not judge the location of objects in space where they really are. For instance, when a background is added to a target object, the judged position of a target with respect to oneself (egocentric position) is shifted in the opposite direction as the placement of such a background with respect to the body midline. It is an ongoing debate whether such effects are due to a uni- or bi-directional interaction between allo- and egocentric spatial representations in the brain, or reflect a response strategy, known as the perceived midline shift. In this study, the effects of allocentric stimulus coordinates on perceived egocentric position were examined more precisely and in a quantitative manner. Furthermore, it was investigated whether the judged allocentric position (with respect to a background) is also influenced by the egocentric position in space of that object. Allo- and egocentric coordinates were varied independently. Also, the effect of background luminance on the observed interactions between spatial coordinates was determined. Since background luminance had an effect on the size of the interaction between allocentric stimulus coordinates and egocentric judgments, and no reverse interaction was found, it seems that interactions between ego- and allocentric reference frames is most likely only unidirectional, with the latter affecting the former. This interaction effect was described in a quantitative manner.  相似文献   

8.
We have investigated how participants match the orientation of a line, which moves on a vertical screen towards the subject. On its path to the participant, the line could disappear at several positions. Participants were instructed to put a bar on a predefined interception point on the screen, such that the bar touched the screen with the same orientation as the moving line at the very moment when the line passed through the interception point or (in case of line disappearance) when the hidden line would pass through the interception point (like in catching). Participants made significant errors for oblique orientations, but not for vertical and horizontal orientations of the moving line. These errors were small or absent when the moving line was visible all the way along its path on the screen. However, these errors became larger when the line disappeared farther away from the interception point. In the second experiment we tested whether these errors could be related to errors in visual perception of line orientation. The results demonstrate that errors in matching of the bar do not correspond to the last perceived orientation of the line, but rather to the perceived orientation of the moving line near the beginning of the movement path. This corresponds to earlier observations that participants shortly track a moving target and then make a saccadic eye movement to the interception point.  相似文献   

9.
10.
To clarify whether motion information per se has a separable influence on action control, the authors investigated whether irrelevant direction of motion of stimuli whose overall position was constant over time would affect manual left-right responses (i.e., reveal a motion-based Simon effect). In Experiments 1 and 2, significant Simon effects were obtained for sine-wave gratings moving in a stationary Gaussian window. In Experiment 3, a direction-based Simon effect with random-dot patterns was replicated, except that the perceived direction of motion was based on the displacement of single elements. Experiments 4 and 5 studied motion-based Simon effects to point-light figures that walked in place--displays requiring high-level analysis of global shape and local motion. Motion-based Simon effects occurred when the displays could be interpreted as an upright human walker, showing that a high-level representation of motion direction mediated the effects. Thus, the present study establishes links between high-level motion perception and action.  相似文献   

11.
Four experiments were directed at understanding the influence of multiple moving objects on curvilinear (i.e., circular and elliptical) heading perception. Displays simulated observer movement over a ground plane in the presence of moving objects depicted as transparent, opaque, or black cubes. Objects either moved parallel to or intersected the observer's path and either retreated from or approached the moving observer. Heading judgments were accurate and consistent across all conditions. The significance of these results for computational models of heading perception and for information in the global optic flow field about observer and object motion is discussed.  相似文献   

12.
Induced motion of a fixated target: influence of voluntary eye deviation.   总被引:1,自引:0,他引:1  
Induced motion (IM) was observed in a fixated target in the direction opposite to the real motion of a moving background. Relative to a fixation target located straight ahead, IM decreased when fixation was deviated 10 degrees in the same direction as background motion and increased when fixation was deviated 10 degrees opposite background motion. These results are consistent with a "nystagmus-suppression" hypothesis for subjective motion of fixated targets: the magnitude of illusory motion is correlated with the amount of voluntary efference required to oppose involuntary eye movements that would occur in the absence of fixation. In addition to the form of IM studied, this explanation applies to autokinesis, apparent concomitant motion, and the oculogyral illusion. Accounts of IM that stress visual capture of vection, afferent mechanisms, egocenter deviations, or phenomenological principles, although they may explain some forms of IM, do not account for the present results.  相似文献   

13.
We examined the ability to use optic flow to judge heading when different parts of the retina are stimulated and when the specified heading is in different directions relative to the display. To do so, we manipulated retinal eccentricity (the angle between the fovea and the center of the stimulus) and heading eccentricity (the angle between the specified heading and the center of the stimulus) independently. Observers viewed two sequences of moving dots that simulated translation through a random cloud of dots. They reported whether the direction of translation—the heading—in the second sequence was to the left or right of the direction in the first sequence. The results revealed a large and consistent effect of heading eccentricity: Judgments were much more accurate with radial flow fields (small heading eccentricities) than with lamellar fields (large heading eccentricities), regardless of the part of the retina being stimulated. The results also revealeda smaller and less consistent effect of retinal eccentricity: With radial flow (small heading eccentricities), judgments were more accurate when the stimulus was presented near the fovea. The variation of heading thresholds from radial to lamellar flow fields is predicted by a simple model of two-dimensional motion discrimination. The fact that the predictions are accurate implies that the human visual system is equally efficient at processing radial and lamellar flow fields. In addition, efficiency is reasonably constant no matter what part of the retina is being stimulated.  相似文献   

14.
The judged vanishing point of a target undergoing apparent motion in a horizontal, vertical, or oblique direction was examined. In Experiment 1, subjects indicated the vanishing point by positioning a crosshair. Judged vanishing point was displaced forward in the direction of motion, with the magnitude of displacement being largest for horizontal motion, intermediate for oblique motion, and smallest for vertical motion. In addition, the magnitude of displacement increased with faster apparent velocities. In Experiment 2, subjects judged whether a stationary probe presented after the moving target vanished was at the same location where the moving target vanished. Probes were located along the axis of motion, and probes located beyond the vanishing point evidenced a higher probability of a same response than did probes behind the vanishing point. In Experiment 3, subjects judged whether a stationary probe presented after the moving target vanished was located on a straight-line extension of the path of motion of the moving target. Probes below the path of motion evidenced a higher probability of a same response than did probes above the path of motion for horizontal and ascending oblique motion; probes above the path of motion evidenced a higher probability for a same response than did probes below the path of motion for descending oblique motion. Overall, the pattern of results suggests that the magnitude of displacement increases as proximity to a horizontal axis increases, and that in some conditions there may be a component analogous to a gravitational influence incorporated into the mental representation.  相似文献   

15.
Two experiments examined how 10- and 12-year-old children and adults intercept moving gaps while bicycling in an immersive virtual environment. Participants rode an actual bicycle along a virtual roadway. At 12 test intersections, participants attempted to pass through a gap between 2 moving, car-sized blocks without stopping. The blocks were timed such that it was sometimes necessary for participants to adjust their speed in order to pass through the gap. We manipulated available visual information by presenting the target blocks in isolation in Experiment 1 and in streams of blocks in Experiment 2. In both experiments, adults had more time to spare than did children. Both groups had more time to spare when they were required to slow down than when they were required to speed up. Participants' behavior revealed a multistage interception strategy that cannot be explained by the use of a monotonic control law such as the constant bearing angle strategy. The General Discussion section focuses on possible sources of changes in perception-action coupling over development and on task-specific constraints that could underlie the observed interception strategy.  相似文献   

16.
Hering's model of egocentric visual direction assumes implicitly that the effect of eye position on direction is both linear and equal for the two eyes; these two assumptions were evaluated in the present experiment. Five subjects pointed (open-loop) to the apparent direction of a target seen under conditions in which the position of one eye was systematically varied while the position of the other eye was held constant. The data were analyzed through examination of the relationship between the variations in perceived egocentric direction and variations in expected egocentric direction based on the positions of the varying eye. The data revealed that the relationship between eye position and egocentric direction is indeed linear. Further, the data showed that, for some subjects, variations in the positions of the two eyes do not have equal effects on egocentric direction. Both the between-eye differences and the linear relationship may be understood in terms of individual differences in the location of the cyclopean eye, an unequal weighting of the positions of the eyes in the processing of egocentric direction, or some combination of these two factors.  相似文献   

17.
Hering’s model of egocentric visual direction assumes implicitly that the effect of eye position on direction is both linear and equal for the two eyes; these two assumptions were evaluated in the present experiment. Five subjects pointed (open-loop) to the apparent direction of a target seen under conditions in which the position of one eye was systematically varied while the position of the other eye was held constant. The data were analyzed through examination of the relationship between the variations in perceived egocentric direction and variations inexpected egocentric direction based on the positions of the varying eye. The data revealed that the relationship between eye position and egocentric direction is indeed linear. Further, the data showed that, for some subjects, variations in the positions of the two eyes do not have equateffectsTjn egocentric direction. Both the between-eye differences and the linear relationship may be understood in terms of individual differences in the location of the cyclopean eye, an unequal weighting of the positions of the eyes in the processing of egocentric direction, or some combination of these two factors.  相似文献   

18.
Ito H  Seno T  Yamanaka M 《Perception》2010,39(11):1555-1561
We investigated how motion lines drawn in the background of a running human silhouette affect motion impressions of a runner in a static image. Observers evaluated the strength and direction of motion impression. The results show that parallel lines do not enhance frontoparallel motion impressions, while converging lines do so in an in-depth direction. This is a counter-example to the hypothesis that motion lines in the background represent motion streaks of the background when one visually tracks a moving object.  相似文献   

19.
Induced motion (IM) was observed in a fixated target in the direction opposite to the real motion of a moving background. Relative to a fixation target located straight ahead, IM decreased when fixation was deviated 10° in the same direction as background motion and increased when fixation was deviated 10° opposite background motion. These results are consistent with a “nystagmus-suppression” hypothesis for subjective motion of fixated targets: the magnitude of illusory motion is correlated with the amount of voluntary efference required to oppose involuntary eye movements that would occur in the absence of fixation. In addition to the form of IM studied, this explanation applies to autokinesis, apparent concomitant motion, and the oculogyral illusion. Accounts of IM that stress visual capture of vection, afferent mechanisms, egocenter deviations, or phenomenological principles, although they may explain some forms of IM, do not account for the present results.  相似文献   

20.
Path integration from optic flow and body senses in a homing task   总被引:1,自引:0,他引:1  
We examined the roles of information from optic flow and body senses (eg vestibular and proprioceptive information) for path integration, using a triangle completion task in a virtual environment. In two experiments, the contribution of optic flow was isolated by using a joystick control. Five circular arenas were used for testing: (B) both floor and wall texture; (F) floor texture only, reducing information for rotation; (W) wall texture only, reducing information for translation; (N) a no texture control condition, and (P) an array of posts. The results indicate that humans can use optic flow for path integration and are differentially influenced by rotational and translational flow. In a third experiment, participants actively walked in arenas B, F, and N, so body senses were also available. Performance shifted from a pattern of underturning to overturning and exhibited decreased variability, similar responses with and without optic flow, and no attrition. The results indicate that path integration can be performed by integrating optic flow, but when information from body senses is available it appears to dominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号