首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an autoassociative memory network and the CA1 area as a critical output structure. In order to understand the respective roles of the CA3- and CA1-hippocampal areas in the formation of contextual memory, we studied the effects of the reversible inactivation by lidocaine of the CA3 or CA1 areas of the dorsal hippocampus on acquisition, consolidation, and retrieval of a contextual fear conditioning. Whereas infusions of lidocaine never impaired elementary tone conditioning, their effects on contextual conditioning provided interesting clues about the role of these two hippocampal regions. They demonstrated first that the CA3 area is necessary for the rapid elaboration of a unified representation of the context. Secondly, they suggested that the CA1 area is rather involved in the consolidation process of contextual memory. Third, they showed that CA1 or CA3 inactivation during retention test has no effect on contextual fear retrieval when a recognition memory procedure is used. In conclusion, our findings point as evidence that CA1 and CA3 subregions of the dorsal hippocampus play important and different roles in the acquisition and consolidation of contextual fear memory, whereas they are not required for context recognition.  相似文献   

2.
Recent lines of research have focused on dissociating function between the dorsal and ventral hippocampus along space and anxiety dimensions. In the dorsal hippocampus, the CA1 subregion has been implicated in the acquisition of contextual fear as well as in the trace interval in trace fear conditioning. The present study was designed to test the relative contributions of dorsal (dCA1) and ventral CA1 (vCA1) in trace fear conditioning. Long-Evans rats received ibotenate lesions of the ventral CA1 (n=7), dorsal CA1 (n=9), or vehicle control lesions (n=8) prior to trace fear conditioning acquisition. Results suggest dCA1 and vCA1 groups show no significant deficits during acquisition when compared to control groups. dCA1 and vCA1 both show deficits in the retention of contextual fear when tested 24 h post-acquisition (P<.05 and P<.01, respectively), and vCA1 was impaired relative to dCA1 (P<.05). This is suggestive of a graded involvement in contextual retention between the dorsal and ventral aspects of CA1. dCA1 showed no deficit for retention of conditioned fear to the tone or the trace when tested 48 h post-acquisition, whereas vCA1 did show a significant deficit for the trace interval and a slight, non-significant reduction in freezing to the tone, when compared to the control group (p<.05). Overall the data are suggestive of a graded involvement in retention of fear conditioning between the dorsal and ventral aspects of CA1, but it is likely that vCA1 may be critically involved in retention of trace fear conditioning.  相似文献   

3.
Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial compartmentalization of PKA signaling is mediated by A-kinase anchoring proteins (AKAPs). Here, we investigated the role of PKA anchoring to AKAPs in different stages of the memory process (acquisition, consolidation, retrieval and extinction) using contextual fear conditioning, a hippocampus-dependent learning task. Mice were injected intracerebroventricularly or intrahippocampally with the membrane permeable PKA anchoring disrupting peptides St-Ht31 or St-superAKAP-IS at different time points during the memory process. Blocking PKA anchoring to AKAPs resulted in an impairment of fear memory consolidation. Moreover, disrupted PKA anchoring promoted contextual fear extinction in the mouse hippocampus. We conclude that the temporal and spatial compartmentalization of hippocampal PKA signaling pathways, as achieved by anchoring of PKA to AKAPs, is specifically instrumental in long-term contextual fear memory consolidation and extinction, but not in acquisition and retrieval.  相似文献   

4.
We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with no effect on tone conditioning. Cholinergic antagonists also impair acquisition of contextual conditioning. Saline, scopolamine, or physostigmine was administered directly into the CA3 subregion of the hippocampus 10 min before rats were trained on a tone/shock-induced fear conditioning paradigm. Freezing behavior was used as the measure of learning. The scopolamine group froze significantly less during acquisition to the context relative to controls. The scopolamine group also froze less to the context test administered 24 h posttraining. A finer analysis of the data revealed that scopolamine disrupted encoding but not retrieval. The physostigmine group initially froze less during acquisition to the context, although this was not significantly different from controls. During the context test, the physostigmine group froze less initially but quickly matched the freezing levels of controls. A finer analysis of the data indicated that physostigmine disrupted retrieval but not encoding. These results suggest that increased ACh levels are necessary for encoding new spatial contexts, whereas decreased ACh levels are necessary for retrieving previously learned spatial contexts.  相似文献   

5.
The cholinergic system has consistently been implicated in Pavlovian fear conditioning. Considerable work has been done to localize specific nicotinic receptor subtypes in the hippocampus and determine their functional importance; however, the specific function of many of these subtypes has yet to be determined. An alpha7 nicotinic antagonist methyllycaconitine (MLA) (35 microg), and a broad spectrum non-alpha7 nicotinic antagonist mecamylamine (35 microg) was injected directly into the dorsal hippocampus or overlying cortex either 15 min pre-, 1 min post-, or 6h post-fear conditioning. One week after conditioning, retention of contextual and cue (tone) conditioning were assessed. A significant impairment in retention of contextual fear was observed when mecamylamine was injected 15 min pre- and 1 min post-conditioning. No significant impairment was observed when mecamylamine was injected 6h post-conditioning. Likewise, a significant impairment in retention of contextual fear was observed when MLA was injected 1 min post-conditioning; however, in contrast, MLA did not show any significant impairments when injected 15 min pre-conditioning, but did show a significant impairment when injected 6h post-conditioning. There were no significant impairments observed when either drug was injected into overlying cortex. No significant impairments were observed in cue conditioning for either drug. In general, specific temporal dynamics involved in nicotinic receptor function were found relative to time of receptor dysfunction. The results indicate that the greatest deficits in long-term retention (1 week) of contextual fear are produced by central infusion of MLA minutes to hours post-conditioning or mecamylamine within minutes of conditioning.  相似文献   

6.
The effect of excitotoxic lesions of dorsal vs. ventral hippocampus on the acquisition and expression of auditory trace fear conditioning was examined in two studies. In Experiment 1, animals received excitotoxic lesions of either the dorsal or ventral hippocampus or sham surgeries one week prior to conditioning, and were tested 24 h later. In Experiment 2, animals received excitotoxic lesions of either the dorsal or ventral hippocampus or sham surgeries 24 h after training, and were tested one week after surgery. Both pre- and post-training lesions of ventral hippocampus impaired the acquisition and expression, respectively, of auditory trace fear conditioning. Pre-training lesions of dorsal hippocampus had no effect on the acquisition of trace fear conditioning, while post-training lesions of dorsal hippocampus dramatically impaired expression during subsequent testing. Although in some cases animals with lesions of ventral hippocampus exhibited locomotor hyperactivity, it is unlikely that the pattern of observed deficits can be attributed to this effect. Collectively these data suggest that the dorsal and ventral hippocampus may contribute differentially to the mnemonic processes underlying fear trace conditioning.  相似文献   

7.
Muscarinic cholinergic antagonism produces learning and memory deficits in a variety of hippocampal-dependent tasks. Hippocampal lesions produce both acquisition deficits and retrograde amnesia for contextual fear conditioning, but do not impact fear conditioning to discrete cues. In order to examine the effects of muscarinic antagonism in this paradigm, rats were given scopolamine (1 mg/kg) either before or for 3 days after a Pavlovian fear-conditioning session in which tones were paired with aversive footshocks. Fear to the context and the tone was assessed by measuring freezing in separate tests. It was found that pretraining, but not posttraining, scopolamine severely impaired contextual fear conditioning; tone conditioning was not affected under either condition (cf., Young, Bohenek, & Fanselow,Neurobiology of Learning and Memory,63,174–180, 1995).  相似文献   

8.
Glucocorticoid receptor activation within the basolateral amygdala (BLA) during fear conditioning may mediate enhancement in rats chronically exposed to stress levels of corticosterone. Male Sprague-Dawley rats received corticosterone (400 microg/ml) in their drinking water (days 1-21), a manipulation that was previously shown to cause hippocampal CA3 dendritic retraction. Subsequently, rats were adapted to the fear conditioning chamber (day 22), then trained (day 23), and tested for conditioned fear to context and tone (day 25). Training consisted of two tone (20s) and footshock (500 ms, 0.25 mA) pairings. In Experiment 1, muscimol (4.4 nmol/0.5 microl/side), a GABAergic agonist, was microinfused to temporarily inactivate the BLA during training. Rats given chronic corticosterone showed enhanced freezing to context, but not tone, compared to vehicle-supplemented rats. Moreover, BLA inactivation impaired contextual and tone conditioning, regardless of corticosterone treatment. In Experiment 2, RU486 (0, 0.3, and 3.0 ng/0.2 microl/side) was infused on training day to antagonize glucocorticoid receptors in the BLA. Corticosterone treatment enhanced fear conditioning to context and tone when analyzed together, but not separately. Moreover, RU486 (3.0 ng/side) selectively exacerbated freezing to context in chronic corticosterone-exposed rats only, but failed to alter tone conditioning. Serum corticosterone levels were negatively correlated with contextual, not tone, conditioning. Altogether, these suggest that chronic corticosterone influences fear conditioning differently than chronic stress as shown previously. Moreover, chronic exposure to corticosteroids alters BLA functioning in a non-linear fashion and that contextual conditioning is influenced more than tone conditioning by chronic corticosterone and BLA glucocorticoid receptor stimulation.  相似文献   

9.
Contextual fear conditioning involves forming a context representation and associating it to a shock, both of which involved the dorsal hippocampus (DH) according to our recent findings. This study tested further whether the two processes may rely on different neurotransmitter systems in the DH. Male Wistar rats with cannula implanted into the DH were subjected to a two-phase training paradigm of contextual fear conditioning to separate context learning from context-shock association in two consecutive days. Immediately after each training phase, different groups of rats received bilateral intra-DH infusion of the GABA(A) agonist muscimol, 5HT(1A) agonist 8-OH-DPAT, NMDA antagonist APV or muscarinic antagonist scopolamine at various doses. On the third day, freezing behavior was tested in the conditioning context. Results showed that intra-DH infusion of muscimol impaired conditioned freezing only if it was given after context learning. In contrast, scopolamine impaired conditioned freezing only if it was given after context-shock training. Posttraining infusion of 8-OH-DPAT or APV had no effect on conditioned freezing when the drug was given at either phase. These results showed double dissociation for the hippocampal GABAergic and cholinergic systems in memory consolidation of contextual fear conditioning: forming context memory required deactivation of the GABA(A) receptors, while forming context-shock memory involved activation of the muscarinic receptors.  相似文献   

10.
Three experiments examined the role of the dorsal hippocampus (dHIPP) in occasion setting with diffuse contextual and discrete light stimuli serving as occasion setters in classical fear conditioning with rats. Both sham-operated and dHIPP-lesioned animals readily learned a L→T+, T? serial feature-positive discrimination in which a light (L) “set the occasion” for reinforcement of a tone (T+). dHIPP-lesioned animals were deficient, however, in acquiring a similar discrimination in which different contexts (A and B) served as occasion setters, i.e., A(T+) and B(T?). The lesioned animals also failed to discriminate between a context in which a tone had been partially reinforced and a context in which no conditioning had taken place, whereas sham-operated animals froze more to the tone in the conditioned context than in the novel context. Collectively, the data indicate that the dorsal hippocampus is important in processing information about the signaling value of contextual, but not discrete, stimuli.  相似文献   

11.
The nonselective muscarinic antagonist scopolamine is known to impair the acquisition of some learning tasks such as inhibitory avoidance. There has been recent research into the effects of this drug in contextual fear conditioning and tone fear conditioning paradigms. The purpose of the present study was to assess the role of the selective M1 muscarinic antagonist dicyclomine in these paradigms and in the inhibitory avoidance test. Rats were administered different doses of dicyclomine or saline 30 min before acquisition training. The animals were tested 24 hr later, and it was observed that 16 mg/kg of dicyclomine impaired both contextual fear conditioning and inhibitory avoidance. However, dicyclomine (up to 64 mg/kg) did not affect tone fear conditioning. These results suggest that the selective M1 muscarinic antagonist dicyclomine differentially affects aversively motivated tasks known to be dependent on hippocampal integrity (such as contextual fear conditioning and inhibitory avoidance) but does not affect similar hippocampus-independent tasks.  相似文献   

12.
There is accumulating evidences to suggest that memory consolidation in some conditions involves two waves of neuronal plastic change. Using two fear conditioning procedures in male C57BL/6J mice, we have recently shown that consolidation of the foreground contextual fear memory required two waves of ERK1/2 activation in hippocampal CA1, while consolidation of cue conditioning was only associated with the early phase of activation. The present experiment further showed that this bi-phasic pattern of ERK1/2 activation was not restricted to hippocampal CA1, but could also be observed in other fear memory-related brain areas. The unpaired conditioning procedure (context in foreground) induced two waves of ERK1/2 activation in hippocampal CA1 and CA3, as well as in the LA and BLA nuclei of the amygdala. In contrast, the paired conditioning procedure (context in background) led to a transient early phase only in hippocampal CA1 and LA. In addition, ERK1/2 phosphorylation in the hippocampus was found to correlate with that in the amygdala nuclei specifically after the unpaired procedure. Taken together, our data suggest that the observed biphasic pattern of neuronal plastic events may reflect the interplay between hippocampal and amygdala activity-dependent plasticity critical for the system consolidation of contextual fear memory.  相似文献   

13.
We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 μg/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval. In the ventral subiculum (vSub), WIN impaired fear retrieval. In the neutral social discrimination task, WIN into the vSub impaired both acquisition/consolidation and retrieval, whereas in the medial amygdala WIN impaired acquisition. The results suggest that cannabinoid signaling differentially affects memory in a task-, region-, and memory stage-dependent manner.  相似文献   

14.
The basolateral amygdala (BLA) and the dorsal hippocampus (dHPC) are both structures with key roles in contextual fear conditioning. During fear conditioning, it is postulated that contextual representations of the environment are formed in the hippocampus, which are then associated with foot shock in the amygdala. However, it is not known to what extent a functional connection between these two structures is required. This study investigated the effect on contextual and cued fear conditioning of disconnecting the BLA and dHPC, using asymmetrically placed, excitotoxic unilateral lesions. Post-training lesions selectively impaired contextual, but not cued, fear, while pretraining lesions resulted in a similar but nonsignificant pattern of results. This effect was unexpectedly observed in both the contralateral disconnection group and the anticipated ipsilateral control, which prompted further examination of individual unilateral lesions of BLA and dHPC. Post-training unilateral dHPC lesions had no effect on contextual fear memories while bilateral dHPC lesions and unilateral BLA lesions resulted in a near total abolition of contextual fear but not cued conditioned fear. Again, pretraining unilateral BLA lesions resulted in a strong but nonsignificant trend to the impairment of contextual fear. Furthermore, an analysis of context test-induced Fos protein expression in the BLA contralateral to the lesion site revealed no differences between post-training SHAM and unilateral BLA lesioned animals. Therefore, post-training unilateral lesions of the BLA are sufficient to severely impair contextual, but not cued, fear memories.  相似文献   

15.
The present study was designed to dissociate the roles of dorsal CA3, dorsal CA1, ventral CA3, and ventral CA1 in contextual and auditory-cued classical fear conditioning. Rats received excitotoxic lesions of dorsal CA3, dorsal CA1, ventral CA3, or ventral CA3 prior to acquisition of classical fear conditioning. Dorsal CA3 and dorsal CA1, but not ventral CA3 or ventral CA1, lesions caused a deficit for the acquisition of contextual fear. Dorsal CA1, ventral CA3, and ventral CA1, but not dorsal CA3, lesions caused deficits for the retrieval/expression of contextual fear when tested either 24 or 48h after encoding. Ventral CA3, but not dorsal CA3, dorsal CA1, or ventral CA1, lesions caused a deficit for retrieval of auditory-cued fear when tested either 24 or 48h after encoding. The data suggest that dorsal CA3 mediates encoding of contextual fear, whereas ventral CA3 mediates retrieval of contextual fear. The data also suggest that dorsal CA1 mediates encoding and retrieval of contextual fear, whereas ventral CA1 mediates only the retrieval of contextual fear.  相似文献   

16.
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning.  相似文献   

17.
双酚A (bisphenol, BPA)是一种广泛应用于塑料制品的环境内分泌干扰物, 具有弱雌激素和抗雄激素活性, 与雌激素受体有一定的亲和力。本实验探讨长期BPA暴露对成年小鼠恐惧记忆的影响及其神经机制。将9周龄雄性小鼠暴露于BPA (0.4、4、40 mg/kg/d) 90 d, 建立小鼠亚慢性BPA暴露模型后, 进行场景性条件恐惧训练, 然后分别在电击后1 hr及24 hr检测小鼠的僵立时间, 同时在电击前、电击后1 hr及24 hr检测海马相关蛋白表达变化。结果表明, BPA (4、40 mg/kg/d)暴露延长小鼠场景性条件恐惧训练后1 hr及24 hr的僵立时间。Western blot蛋白检测结果显示, 行为训练前, BPA降低了小鼠NMDA受体NR1亚基表达水平, 上调组蛋白去乙酰化酶2表达。行为训练后1 hr及24 hr, BPA促进海马NMDA受体亚基NR1和组蛋白H3乙酰化表达, 抑制组蛋白去乙酰化酶2表达, 同时促进ERK1/2磷酸化水平。以上结果表明, 长期BPA暴露提高成年小鼠恐惧记忆获得的同时延长恐惧记忆的保持; 该作用可能通过激活海马的ERK1/2通路而改变核内组蛋白乙酰化和NMDA受体水平进行。  相似文献   

18.
Benzodiazepines have been useful tools for investigating mechanisms underlying learning and memory. The present set of experiments investigates the role of hippocampal GABA(A)/benzodiazepine receptors in memory consolidation using Pavlovian fear conditioning. Rats were prepared with cannulae aimed at the dorsal hippocampus and trained with a series of white noise-shock pairings. In the first experiment, animals received intrahippocampal infusion of midazolam or vehicle immediately or 3 h after training. Then, 24 h later, freezing to the training context and the white noise were measured independently. Results show infusion of midazolam immediately, but not 3 h, after training selectively attenuates contextual fear conditioning. In the second experiment, animals received intrahippocampal infusions of an antisense oligodeoxynucleotide (ODN) targeting the alpha5 subunit of the GABA(A) receptor or a missense control for several days prior to training and testing. Immediately after training, animals received an infusion of either midazolam or vehicle. Western blots conducted after testing showed a significant decrease in alpha5-containing GABA(A) receptor protein. This reduction did not alter the effectiveness of midazolam immediately after training at impairing context fear memory. Therefore, alpha5-containing GABA(A) receptors may not contribute to the effects of midazolam on context fear conditioning when given immediately post-training.  相似文献   

19.
The mu opioid receptor may constitute a critical component of a negative feedback system that regulates Pavlovian fear conditioning. We investigated context fear conditioning acquisition and expression in mu opioid receptor knockout mice (on an inbred, C57 genetic background). We discovered that the mu receptor knockout results in an unexpected and significant deficit in context fear acquisition. Mice lacking the mu receptor showed normal fear acquisition when subjected to a 1-day fear conditioning protocol but evinced deficient fear learning when acquisition was conducted across 5 days. The knockout mice showed normal reactivity to footshock in both fear conditioning protocols. Finally, we confirmed the effectiveness of the receptor deletion in the C57 strain by subjecting the mice to a test of morphine analgesia in the hot-plate assay. As has been seen with mixed genetic background, the receptor deletion resulted in a complete lack of analgesic response to 10 mg/kg morphine. Surprisingly, mice with a single copy of the mu receptor gene (heterozygous knockouts) showed intact sensitivity to morphine but a significant deficit in Pavlovian fear conditioning. The results indicate that deletion of the mu receptor gene impairs fear conditioning and that the conditioning and analgesia effects of heterozygous deletion are dissociable. The conditioning deficit seen in this line of mice may be related to impairment in hippocampus function.  相似文献   

20.
In fear conditioning, extinction targets harm expectancy as well as the fear response, but it often fails to eradicate the negative affective value that is associated with the conditioned stimulus. In the present study, we examined whether counterconditioning can serve to reduce evaluative responses within fear conditioning. The sample consisted of 70 nonselected students, 12 of whom were men. All participants received acquisition with human face stimuli as the conditioned stimuli and an unpleasant white noise as the unconditioned stimulus. After acquisition, one third of the sample was allocated to an extinction procedure. The other participants received counterconditioning with either a neutral stimulus (neutral tone) or a positive stimulus (baby laugh). Results showed that counterconditioning (with both neutral and positive stimuli), in contrast to extinction, successfully reduced evaluative responses. This effect was found on an indirect measure (affective priming task), but not on self-report. Counterconditioning with a positive stimulus also tended to enhance the reduction of conditioned skin conductance reactivity. The present data suggest that counterconditioning procedures might be a promising approach in diminishing evaluative learning and even expectancy learning in the context of fear conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号