首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human visuospatial functions are commonly divided into those dependent on the ventral visual stream (ventral occipitotemporal regions), which allows for processing the ‘what’ of an object, and the dorsal visual stream (dorsal occipitoparietal regions), which allows for processing ‘where’ an object is in space. Information about the development of each of the two streams has been accumulating, but very little is known about the effects of injury, particularly very early injury, on this developmental process. Using a set of computerized dorsal and ventral stream tasks matched for stimuli, required response, and difficulty (for typically-developing individuals), we sought to compare the differential effects of injury to the two systems by examining performance in individuals with perinatal brain injury (PBI), who present with selective deficits in visuospatial processing from a young age. Thirty participants (mean = 15.1 years) with early unilateral brain injury (15 right hemisphere PBI, 15 left hemisphere PBI) and 16 matched controls participated. On our tasks children with PBI performed more poorly than controls (lower accuracy and longer response times), and this was particularly prominent for the ventral stream task. Lateralization of PBI was also a factor, as the dorsal stream task did not seem to be associated with lateralized deficits, with both PBI groups showing only subtle decrements in performance, while the ventral stream task elicited deficits from RPBI children that do not appear to improve with age. Our findings suggest that early injury results in lesion-specific visuospatial deficits that persist into adolescence. Further, as the stimuli used in our ventral stream task were faces, our findings are consistent with what is known about the neural systems for face processing, namely, that they are established relatively early, follow a comparatively rapid developmental trajectory (conferring a vulnerability to early insult), and are biased toward the right hemisphere.  相似文献   

2.
Williams syndrome (WS) is a genetic disorder associated with severe visuospatial deficits, relatively strong language skills, heightened social interest, and increased attention to faces. On the basis of the visuospatial deficits, this disorder has been characterized primarily as a deficit of the dorsal stream, the occipitoparietal brain regions that subserve visuospatial processing. However, some evidence indicates that this disorder may also affect the development of the ventral stream, the occipitotemporal cortical regions that subserve face and object recognition. The present studies examined ventral stream function in WS, with the hypothesis that faces would produce a relatively more mature pattern of ventral occipitotemporal activation, relative to other objects that are also represented across these visual areas. Using functional magnetic imaging, we compared activation patterns during viewing of human faces, cat faces, houses and shoes in individuals with WS (age 14-27), typically developing 6-9-year-olds (matched approximately on mental age), and typically developing 14-26-year-olds (matched on chronological age). Typically developing individuals exhibited changes in the pattern of activation over age, consistent with previous reports. The ventral stream topography of individuals with WS differed from both control groups, however, reflecting the same level of activation to face stimuli as chronological age matches, but less activation to house stimuli than either mental age or chronological age matches. We discuss the possible causes of this unusual topography and implications for understanding the behavioral profile of people with WS.  相似文献   

3.
Hickok G  Poeppel D 《Cognition》2004,92(1-2):67-99
Despite intensive work on language-brain relations, and a fairly impressive accumulation of knowledge over the last several decades, there has been little progress in developing large-scale models of the functional anatomy of language that integrate neuropsychological, neuroimaging, and psycholinguistic data. Drawing on relatively recent developments in the cortical organization of vision, and on data from a variety of sources, we propose a new framework for understanding aspects of the functional anatomy of language which moves towards remedying this situation. The framework posits that early cortical stages of speech perception involve auditory fields in the superior temporal gyrus bilaterally (although asymmetrically). This cortical processing system then diverges into two broad processing streams, a ventral stream, which is involved in mapping sound onto meaning, and a dorsal stream, which is involved in mapping sound onto articulatory-based representations. The ventral stream projects ventro-laterally toward inferior posterior temporal cortex (posterior middle temporal gyrus) which serves as an interface between sound-based representations of speech in the superior temporal gyrus (again bilaterally) and widely distributed conceptual representations. The dorsal stream projects dorso-posteriorly involving a region in the posterior Sylvian fissure at the parietal-temporal boundary (area Spt), and ultimately projecting to frontal regions. This network provides a mechanism for the development and maintenance of "parity" between auditory and motor representations of speech. Although the proposed dorsal stream represents a very tight connection between processes involved in speech perception and speech production, it does not appear to be a critical component of the speech perception process under normal (ecologically natural) listening conditions, that is, when speech input is mapped onto a conceptual representation. We also propose some degree of bi-directionality in both the dorsal and ventral pathways. We discuss some recent empirical tests of this framework that utilize a range of methods. We also show how damage to different components of this framework can account for the major symptom clusters of the fluent aphasias, and discuss some recent evidence concerning how sentence-level processing might be integrated into the framework.  相似文献   

4.
In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such functional segregation is present early on in infancy, and that the two streams follow independent maturational trajectories during childhood. Here we collected, in a large sample of young children and adults, behavioural measures on an extensive set of functions typically associated with either the dorsal or the ventral stream. We then used a correlational approach to investigate the presence of inter‐individual variability resulting in clustering of functions. Results show that dorsal‐ and ventral‐related functions follow two uncorrelated developmental trajectories. Moreover, within each stream, some functions show age‐independent correlations: finger gnosis, non‐symbolic numerical abilities and spatial abilities within the dorsal stream, and object and face recognition abilities within the ventral stream. This pattern of clear within‐stream cross‐task correlation seems to be lost in adults, with two notable exceptions: performance in face and object recognition on one side, and in symbolic and non‐symbolic comparison on the other, remain correlated, pointing to distinct shape recognition and quantity comparison systems.  相似文献   

5.
The literature on visuospatial processing describes two distinct pathways within the brain: a dorsal route extending from the visual cortex into the parietal lobes that is critical for spatial processing and a ventral route extending from the visual cortex into the temporal lobes that is critical for form perception. These visual streams appear to differ in their developmental trajectories and their vulnerabilities to diverse neurodevelopmental conditions. The present work aims to investigate development and vulnerability in two aspects of dorsal and ventral visual-stream function, namely attention to location and attention to identity. In Study 1, we compare typically-developing (TD) youth aged 9 to 16 years with young adults aged 18 to 22 years on computerized location and identity tasks. In Study 2, we compare children and adolescents who have congenital hypothyroidism (CH), a pediatric endocrine disorder, with age-matched TD controls on the same tasks. The results from Study 1 show that the youths were less accurate than the adults at judging identity, whereas both groups were equally accurate at judging location. The results from Study 2 show that the youths with CH were slower but not less accurate than the TD youths in making both identity and location judgments. The results are interpreted as signifying later development of ventral (identity) stream functions compared to dorsal (location) but equal vulnerability of both functions in CH.  相似文献   

6.
Brogaard  Berit 《Synthese》2020,198(17):3943-3967

For almost half a century dual-stream advocates have vigorously defended the view that there are two functionally specialized cortical streams of visual processing originating in the primary visual cortex: a ventral, perception-related ‘conscious’ stream and a dorsal, action-related ‘unconscious’ stream. They furthermore maintain that the perceptual and memory systems in the ventral stream are relatively shielded from the action system in the dorsal stream. In recent years, this view has come under scrutiny. Evidence points to two overlapping action pathways: a dorso-dorsal pathway that calculates features of the object to be acted on, and a ventro-dorsal pathway that transmits stored information about skilled object use from the ventral stream to the dorso-dorsal pathway. This evidence suggests that stored information may exert significantly more influence on visually guided action than hitherto assumed. I argue that this, in turn, supports the notion of skilled automatic action that is nonetheless agential. My focus here will be on actions influenced by implicit biases (stereotypes/prejudices). Action that is biased in this way, I argue, is in an important sense intentional and agential.

  相似文献   

7.
Current views of the parietal cortex have difficulty accommodating the human inferior parietal lobe (IPL) within a simple dorsal versus ventral stream dichotomy. In humans, lesions of the right IPL often lead to syndromes such as hemispatial neglect that are seemingly in accord with the proposal that this region has a crucial role in spatial processing. However, recent imaging and lesion studies have revealed that inferior parietal regions have non-spatial functions, such as in sustaining attention, detecting salient events embedded in a sequence of events and controlling attention over time. Here, we review these findings and show that spatial processes and the visual guidance of action are only part of the repertoire of parietal functions. Although sub-regions in the human superior parietal lobe and intraparietal sulcus contribute to vision-for-action and spatial functions, more inferior parietal regions have distinctly non-spatial attributes that are neither conventionally 'dorsal' nor conventionally 'ventral' in nature.  相似文献   

8.
The organization of category-selective regions in ventral visual cortex is well characterized in human adults. We investigated a crucial, previously unaddressed, question about how this organization emerges developmentally. We contrasted the developmental trajectories for face-, object-, and place-selective activation in the ventral visual cortex in children, adolescents, and adults. Although children demonstrated adult-like organization in object- and place-related cortex, as a group they failed to show consistent face-selective activation in classical face regions. The lack of a consistent neural signature for faces was attributable to (1) reduced face-selectivity and extent of activation within the regions that will become the FFA, OFA, and STS in adults, and (2) smaller volumes and considerable variability in the locus of face-selective activation in individual children. In contrast, adolescents showed an adult-like pattern of face-selective activation, although it was more right-lateralized. These findings reveal critical age-related differences in the emergence of category-specific functional organization in the visual cortex and support a model of brain development in which specialization emerges from interactions between experience-dependent learning and the maturing brain.  相似文献   

9.
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anticorrelation between the amygdala and the ventral striatum/ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification.  相似文献   

10.
The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.  相似文献   

11.
Adolescence is a period of life in which the sense of 'self' changes profoundly. Here, we review recent behavioural and neuroimaging studies on adolescent development of the self-concept. These studies have shown that adolescence is an important developmental period for the self and its supporting neural structures. Recent neuroimaging research has demonstrated that activity in brain regions associated with self-processing, including the medial prefrontal cortex, changes between early adolescence and adulthood. These studies indicate that neurocognitive development might contribute to behavioural phenomena characteristic of adolescence, such as heightened self-consciousness and susceptibility to peer influence. We attempt to integrate this recent neurocognitive research on adolescence with findings from developmental and social psychology.  相似文献   

12.
Traditional spelling theory and practice are contrasted with the instructional implications derived from recent research in developmental spelling. After a brief historical explication of previous views of spelling, the nature of the developmental spelling continuum is described. Then, the common instructional concerns of word selection, yearly and weekly routines, and organizing to meet the needs of poor spellers are considered against the developmental backdrop. This paper hinges on the premise that the last fifteen years of spelling research have irrevocably set us on a new path in our understanding of spelling development. Consequently new understandings about instruction are not only timely, but necessary.  相似文献   

13.
Information about object-associated manipulations is lateralized to left parietal regions, while information about the visual form of tools is represented bilaterally in ventral occipito-temporal cortex. It is unknown how lateralization of motor-relevant information in left-hemisphere dorsal stream regions may affect the visual processing of manipulable objects. We used a lateralized masked priming paradigm to test for a right visual field (RVF) advantage in tool processing. Target stimuli were tools and animals, and briefly presented primes were identical to or scrambled versions of the targets. In Experiment 1, primes were presented either to the left or to the right of the centrally presented target, while in Experiment 2, primes were presented in one of eight locations arranged radially around the target. In both experiments, there was a RVF advantage in priming effects for tool but not for animal targets. Control experiments showed that participants were at chance for matching the identity of the lateralized primes in a picture?Cword matching experiment and also ruled out a general RVF speed-of-processing advantage for tool images. These results indicate that the overrepresentation of tool knowledge in the left hemisphere affects visual object recognition and suggests that interactions between the dorsal and ventral streams occurs during object categorization.  相似文献   

14.
We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20 years 1 month old, SD 13 months), performed a 1-back memory task of Object or Grip information using a hand grasping a drinking vessel as stimulus. While history of prematurity did not significantly affect task performance, Group by Task analysis of variance in regions of interest spanning the occipital, temporal and parietal lobes revealed main effects of Task and interactions between the two factors. Object processing activated the left inferior occipital cortex and bilateral ventral temporal regions, belonging to the ventral stream, with no effect of Group. Grip processing across groups activated the early visual cortex and the left supramarginal gyrus belonging to the dorsal stream. Group effect on the brain activity during Grip suggested that Controls represented the actions’ goal while Premas relied more on low-level visual information. This shift from higher- to lower-order visual processing between Controls and Premas may reflect a more general trend, in which Premas inadequately recruit higher-order visual functions for dorsal stream task performance, and rely more on lower-level functions.  相似文献   

15.
It is well established that scenes and objects elicit a highly selective response in specific brain regions in the ventral visual cortex. An inherent difference between these categories that has not been explored yet is their perceived distance from the observer (i.e. scenes are distal whereas objects are proximal). The current study aimed to test the extent to which scene and object selective areas are sensitive to perceived distance information independently from their category-selectivity and retinotopic location. We conducted two studies that used a distance illusion (i.e., the Ponzo lines) and showed that scene regions (the parahippocampal place area, PPA, and transverse occipital sulcus, TOS) are biased toward perceived distal stimuli, whereas the lateral occipital (LO) object region is biased toward perceived proximal stimuli. These results suggest that the ventral visual cortex plays a role in representing distance information, extending recent findings on the sensitivity of these regions to location information. More broadly, our findings imply that distance information is inherent to object recognition.  相似文献   

16.
The cortical representation of concepts varies according to the information critical for their development. Living categories, being mainly based upon visual information, are bilaterally represented in the rostral parts of the ventral stream of visual processing; whereas tools, being mainly based upon action data, are unilaterally represented in a left-sided fronto-parietal network. The unilateral representation of tools results from involvement in actions of the right side of the body.  相似文献   

17.
Perceiving an event requires the integration of its features across numerous brain maps and modules. Visual object perception is thought to be mediated by a ventral processing stream running from occipital to inferotemporal cortex, whereas most spatial processing and action control is attributed to the dorsal stream connecting occipital, parietal, and frontal cortex. Here we show that integration operates not only on ventral features and objects, such as faces and houses, but also across ventral and dorsal pathways, binding faces and houses to motion and manual action. Furthermore, these bindings seem to persist over time, as they influenced performance on future task-relevant visual stimuli. This is reflected by longer reaction times for repeating one, but alternating other features in a sequence, compared to complete repetition or alternation of features. Our findings are inconsistent with the notion that the dorsal stream is operating exclusively online and has no access to memory.  相似文献   

18.
Dual-process theories have gained increasing importance in psychology. The contrast that they describe between an old intuitive and a new deliberative mind seems to make these theories especially suited to account for development. Accordingly, this special issue aims at presenting the latest applications of dual-process theories to cognitive development. Dual-process theoreticians mainly focused on adult functioning have been invited to elaborate the developmental implications of their theory, while developmental psychologists who have proposed dual-process theories of development in the domain of thinking and reasoning present the most recent formulation of their theory and review supporting empirical evidence.  相似文献   

19.
Recent imaging studies have suggested that developmental changes may parallel aspects of adult learning in cortical activation becoming less diffuse and more focal over time. However, while adult learning studies examine changes within subjects, developmental findings have been based on cross-sectional samples and even comparisons across studies. Here, we used functional MRI in children to test directly for shifts in cortical activity during performance of a cognitive control task, in a combined longitudinal and cross-sectional study. Our longitudinal findings, relative to our cross-sectional ones, show attenuated activation in dorsolateral prefrontal cortical areas, paralleled by increased focal activation in ventral prefrontal regions related to task performance.  相似文献   

20.
With the introduction of continuous flash suppression (CFS) as a method to render stimuli invisible and study unconscious visual processing, a novel hypothesis has gained popularity. It states that processes typically ascribed to the dorsal visual stream can escape CFS and remain functional, while ventral stream processes are suppressed when stimuli are invisible under CFS. This notion of a CFS-specific “dorsal processing bias” has been argued to be in line with core characteristics of the influential dual-stream hypothesis of visual processing which proposes a dissociation between dorsally mediated vision-for-action and ventrally mediated vision-for-perception. Here, we provide an overview of neuroimaging and behavioral studies that either examine this dorsal processing bias or base their conclusions on it. We show that both evidence for preserved ventral processing as well as lack of dorsal processing can be found in studies using CFS. To reconcile the diverging results, differences in the paradigms and their effects are worthy of future research. We conclude that given the current level of information a dorsal processing bias under CFS cannot be universally assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号