首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An active kinesthetic-to-visual matching task was performed by 15 children aged 5-10 years and five young adults. The task required the participants to locate the target visually while performing center-out drawing movements to the located visual targets in the absence of visual feedback of hand/pen motion. Movement time (MT), terminal end-point position error (EPE), and initial directional error (IDE) were measured. The general finding is that the end-point error variability, representing the joint localization probability distributions for proprioceptive localization of the hand and visual localization of the target, was largest for the youngest children, but did not differ from one another for the older age groups. The localization distributions, as characterized by principal component analysis, showed that both errors in extent and direction were significantly larger in the youngest children. These error distributions could not be accounted for by initial localization errors prior to movement onset in the children. It is likely that at least some portion of the increased movement variability seen during sensorimotor development in young children can be attributed not only to immature control mechanisms per se, but also to partial, not yet stable, forward representations for hand localization which are used for movement perception, planning, and control.  相似文献   

2.
Eight people with Parkinson's disease (PD), 8 age-matched older adults, and 8 young adults executed 3-dimensional rapid aiming movements to 1, 3, 5, and 7 targets. Reaction time, flight time, and time after peak velocity to the 1st target indicated that both neurologically healthy groups implemented a plan on the basis of anticipation of upcoming targets, whereas the PD group did not. One suggested reason for the PD group's deficiency in anticipatory control is the greater variability in their initial force impulse. Although the PD group scaled peak velocity and time to peak velocity similarly to the other groups, their coefficients of variation were greater, making consistent prediction of the movement outcome difficult and thus making it less advantageous to plan too far in advance. A 2nd finding was that the PD group exhibited increased slowing in time after peak velocity in the final segments of the longest sequence, whereas the other 2 groups did not. The increased slowing could be the result of a different movement strategy, increased difficulty modulating the agonist and antagonist muscle groups later in the sequence, or both. The authors conclude that people with PD use more segmented planning and control strategies than do neurologically healthy older and young adults when executing movement sequences and that the locus of increased bradykinesia in longer sequences is in the deceleration phase of movement.  相似文献   

3.
It has been shown that, even for very fast and short duration movements, seeing one's hand in peripheral vision, or a cursor representing it on a video screen, resulted in a better direction accuracy of a manual aiming movement than when the task was performed while only the target was visible. However, it is still unclear whether this was caused by on-line or off-line processes. Through a novel series of analyses, the goal of the present study was to shed some light on this issue. We replicated previous results showing that the visual information concerning one's movement, which is available between 40 degrees and 25 degrees of visual angle, is not useful to ensure direction accuracy of video-aiming movements, whereas visual afferent information available between 40 degrees and 15 degrees of visual angle improved direction accuracy over a target-only condition. In addition, endpoint variability on the direction component of the task was scaled to direction variability observed at peak movement velocity. Similar observations were made in a second experiment when the position of the cursor was translated to the left or to the right as soon as it left the starting base. Further, the data showed no evidence of on-line correction to the direction dimension of the task for the translated trials. Taken together, the results of the two experiments strongly suggest that, for fast video-aiming movements, the information concerning one's movement that is available in peripheral vision is used off-line.  相似文献   

4.
Using a lifespan approach, the authors investigated developmental features of the control of ballistic aiming arm movements by manipulating movement complexity, response uncertainty, and the use of precues. Four different age groups of participants (6- and 9-year-old boys and girls and 24- and 73-year-old men and women, 20 participants in each age group) performed 7 types of rapid aiming arm movements on the surface of a digitizer. Their movement characteristics such as movement velocity, normalized jerk, relative timing, movement linearity, and intersegment intervals were profiled. Analyses of variance with repeated measures were conducted on age and task effects in varying movement complexity (Study 1), response uncertainty (Study 2), and precue use (Study 3) conditions. Young children and senior adults had slower, more variant, less smooth, and less linear arm movements than older children and young adults. Increasing the number of movement segments resulted in slower and more variant responses. Movement accuracy demands or response uncertainty interacted with age so that the 6- and 74-year-old participants had poorer performances but responded similarly to the varying treatments. Even though older children and young adults had better performances than young children and senior adults, their arm movement performance declined when response uncertainty increased. The analyses suggested that young children's and senior adults' performances are poorer because less of their movement is under central control, and they therefore use on-line adjustments. In addition, older children and young adults use a valid precue more effectively to prepare for subsequent movements than do young children and senior adults, suggesting that older children and young adults are more capable of organizing motor responses than are young children and senior adults.  相似文献   

5.
Using a lifespan approach, the authors investigated developmental features of the control of ballistic aiming arm movements by manipulating movement complexity, response uncertainty, and the use of precues. Four different age groups of participants (6- and 9-year-old boys and girls and 24- and 73-year- old men and women, 20 participants in each age group) performed 7 types of rapid aiming arm movements on the surface of a digitizer. Their movement characteristics such as movement velocity, normalized jerk, relative timing, movement linearity, and intersegment intervals were profiled. Analyses of variance with repeated measures were conducted on age and task effects in varying movement complexity (Study 1), response uncertainty (Study 2), and precue use (Study 3) conditions. Young children and senior adults had slower, more variant, less smooth, and less linear arm movements than older children and young adults. Increasing the number of movement segments resulted in slower and more variant responses. Movement accuracy demands or response uncertainty interacted with age so that the 6- and 74-year-old participants had poorer performances but responded similarly to the varying treatments. Even though older children and young adults had better performances than young children and senior adults, their arm movement performance declined when response uncertainty increased. The analyses suggested that young children's and senior adults' performances are poorer because less of their movement is under central control, and they therefore use on-line adjustments. In addition, older children and young adults use a valid precue more effectively to prepare for subsequent movements than do young children and senior adults, suggesting that older children and young adults are more capable of organizing motor responses than arc young children and senior adults.  相似文献   

6.
Elderly adults often exhibit performance deficits during goal-directed movements of the dominant arm compared with young adults. Recent studies involving hemispheric lateralization have provided evidence that the dominant and non-dominant hemisphere-arm systems are specialized for controlling different movement parameters and that hemispheric specialization may be reduced during normal aging. The purpose was to examine age-related differences in the movement structure for the dominant (right) and non-dominant (left) during goal-directed movements. Young and elderly adults performed 72 aiming movements as fast and as accurately as possible to visual targets with both arms. The findings suggest that previous research utilizing the dominant arm can be generalized to the non-dominant arm because performance was similar for the two arms. However, as expected, the elderly adults showed shorter relative primary submovement lengths and longer relative primary submovement durations, reaction times, movement durations, and normalized jerk scores compared to the young adults.  相似文献   

7.
The present study examined the relationship between directionality of drawing movements and the orientation of drawn products in right-handed adults and young children for 27 Japanese kindergartners and 29 Japanese university students who were asked to draw with each hand fishes in side view and circles from several starting points. Significant values of chi2 for distributions of frequencies of orientation of the fish drawings and the direction of circular drawing movement indicated that adult right-handers drawing the fish facing to the left tended to draw a circle clock-wise when they drew with the dominant hand, while there was no such significant relationship in young children's drawings. This result may suggest that the reading and writing habits may be implicated in the direction of drawing movements with the dominant hand, and this directional bias of drawing movement in the dominant hand can appear in the orientation of finished drawings.  相似文献   

8.
Bimanual coordination is governed by constraints that permit congruent movements to be performed more easily than incongruent movements. Theories concerning the origin of these constraints range from low level motor-muscle explanations to high level perceptual–cognitive ones. To elucidate the processes underlying coordinative constraints, we asked subjects to use a pair of left–right joysticks to acquire corresponding pairs of congruent and incongruent targets presented on a video monitor under task conditions designed to systematically modulate the impact of several perceptual–cognitive processes commonly required for bimanual task performance. These processes included decoding symbolic cues, detecting goal targets, conceptualizing movements in terms of goal target configuration, planning movement trajectories, producing saccades and perceiving visual feedback. Results demonstrate that constraints arise from target detection and trajectory planning processes that can occur prior to movement initiation as well as from inherent muscle properties that emerge during movement execution, and that the manifestation of these constraints can be significantly altered by the ability to visually monitor movement progress.  相似文献   

9.
Aiming movements are part of daily activities but the brain hemispheres’ role in targeted aiming sequential movements is not fully clear. Start and execution of discrete and sequential tasks toward targets were analyzed in 10 individuals with left-hemisphere damage, 10 right-hemisphere–damaged, and 10 healthy ones. Arm movements were performed over a digitizing tablet, following stimuli on a monitor, from initial position toward right and left-positioned targets. Poststroke individuals used their ipsilesional arm and healthy individuals, both arms. Right-hemisphere–damaged individuals showed higher reaction time and left-hemisphere–damaged individuals, lower smoothness. Due to spatial demand of tasks, the right hemisphere played a major role in movement planning, while the left, in movement execution.  相似文献   

10.
Reliable sensory-motor integration is a pre-requisite for optimal movement control; the functionality of this integration changes during development. Previous research has shown that motor performance of school-age children is characterized by higher variability, particularly under conditions where vision is not available, and movement planning and control is largely based on kinesthetic input. The purpose of the current study was to determine the characteristics of how kinesthetic-motor internal representations interact with visuo-motor representations during development. To this end, we induced a visuo-motor adaptation in 59 children, ranging from 5 to 12 years of age, as well as in a group of adults, and measured initial directional error (IDE) and endpoint error (EPE) during a subsequent condition where visual feedback was not available, and participants had to rely on kinesthetic input. Our results show that older children (age range 9–12 years) de-adapted significantly more than younger children (age range 5–8 years) over the course of 36 trials in the absence of vision, suggesting that the kinesthetic-motor internal representation in the older children was utilized more efficiently to guide hand movements, and was comparable to the performance of the adults.  相似文献   

11.
Previous work with adults provides evidence that ‘intention’ used in processing simulated actions is similar to that used in planning and processing overt movements. The present study compared young adults and children on their ability to estimate distance reachability using a NOGO/GO paradigm in conditions of imagery only (IO) and imagery with actual execution (IE). Our initial thoughts were that whereas intention is associated with motivation and commitment to act, age-related differences could impact planning. Results indicated no difference in overall accuracy by condition within groups, and as expected adults were more accurate. These findings support an increasing body of evidence suggesting that the neurocognitive processes (in this case, intention) driving motor imagery and overt actions are similar, and as evidenced here, functioning by age 7.  相似文献   

12.
Recent results indicate that adults modulate their initial movement impulse toward a stationary visual target by processing visual afferent information. The authors investigated whether the mechanisms responsible for those modulations are already in place in young children or develop as the children grow older. Adults (n = 10) and 6-, 8- and 10-year-old children (ns = 6, 7, and 7, respectively) performed a video-aiming task while vision of the cursor they were moving was (acquisition) or was not (transfer) visible. The results indicated that within-participant variability of the initial impulse trajectory of the children's aiming movement leveled-off in acquisition between peak extent deceleration and the end of the initial impulse, whereas it increased linearly as movement unfolded in transfer. The results also indicated that children modulate their initial movement impulse when visual afferent information is available, although to a lesser extent than adults do, and strongly imply that contrary to past suggestions, the initial impulse of an aiming movement is not ballistic.  相似文献   

13.
In performing the sit-to-stand transition, young children (6- to 7-year-olds) were expected to display a movement form similar to that of adults. However, movement consistency was predicted to be poorer in children than in adults because they lack refinement of motor control processes. Kinematic analysis of 10 repetitions of the sit-to-stand movement was carried out for 6 typically developing children and 6 adults. Supporting the authors' prediction of comparable form, no differences were evident between age groups for sequence of joint onsets, proportional duration of segmental motion, or in angle-angle plots of displacement at 2 segments. In contrast, within-participant variability was found to be higher for children: Coefficients of variation for most kinematic measures were twice those seen for adults. The authors interpret the children's lack of movement consistency as a reflection of inadequate stabilization of an internal model of intersegmental dynamics. Whereas adults have attained a skill level associated with refinement of that model, children have not. Children have an additional control problem because changes in body morphology throughout childhood require ongoing updating of the internal model that controls intrinsic dynamics.  相似文献   

14.
In performing the sit-to-stand transition, young children (6- to 7-year-olds) were expected to display a movement form similar to that of adults. However, movement consistency was predicted to be poorer in children than in adults because they lack refinement of motor control processes. Kinematic analysis of 10 repetitions of the sit-to-stand movement was carried out for 6 typically developing children and 6 adults. Supporting the authors' prediction of comparable form, no differences were evident between age groups for sequence of joint onsets, proportional duration of segmental motion, or in angle-angle plots of displacement at 2 segments. In contrast, within-participant variability was found to be higher for children: Coefficients of variation for most kinematic measures were twice those seen for adults. The authors interpret the children's lack of movement consistency as a reflection of inadequate stabilization of an internal model of intersegmental dynamics. Whereas adults have attained a skill level associated with refinement of that model, children have not. Children have an additional control problem because changes in body morphology throughout childhood require ongoing updating of the internal model that controls intrinsic dynamics.  相似文献   

15.
Hearing and repeating novel phonetic sequences, or novel nonwords, is a task that taps many levels of processing, including auditory decoding, phonological processing, working memory, speech motor planning and execution. Investigations of nonword repetition abilities have been framed within models of psycholinguistic processing, while the motor aspects, which also are critical for task performance, have been largely ignored. We focused our investigation on both the behavioral and speech motor performance characteristics of this task as performed in a learning paradigm by 9‐ and 10‐year‐old children and young adults. Behavioral (percent correct productions) and kinematic (movement duration, lip aperture variability – an index of the consistency of inter‐articulator coordination on repeated trials) measures were obtained in order to investigate the short‐term (Day 1, first five vs. next five trials) and longer‐term (Day 1 vs. Day 2, first five vs. next five trials) changes associated with practice within and between sessions. Overall, as expected, young adults showed higher levels of behavioral accuracy and greater levels of coordinative consistency than the children. Both groups, however, showed a learning effect, such that in general, later Day 1 trials and Day 2 trials were shorter in duration and more consistent in coordination patterns than Day 1 early trials. Phonemic complexity of the nonwords had a profound effect on both the behavioral and speech motor aspects of performance. The children showed marked learning effects on all nonwords that they could produce accurately, while adults’ performance improved only when challenged by the more complex nonword stimuli in the set. The findings point to a critical role for speech motor processes within models of nonword repetition and suggest that young adults, similar to children, show short‐ and longer‐term improvements in coordinative consistency with repeated production of complex nonwords. There is also a clear developmental change in nonword production performance, such that less complex novel sequences elicit changes in speech motor performance in children, but not in adults.  相似文献   

16.
《Acta psychologica》2013,143(2):157-167
The minimum variance theory proposes that motor commands are corrupted by signal-dependent noise and smooth trajectories with low noise levels are selected to minimize endpoint error and endpoint variability. The purpose of the study was to determine the contribution of trajectory smoothness to the endpoint accuracy and endpoint variability of rapid multi-joint arm movements. Young and older adults performed arm movements (4 blocks of 25 trials) as fast and as accurately as possible to a target with the right (dominant) arm. Endpoint accuracy and endpoint variability along with trajectory smoothness and error were quantified for each block of trials. Endpoint error and endpoint variance were greater in older adults compared with young adults, but decreased at a similar rate with practice for the two age groups. The greater endpoint error and endpoint variance exhibited by older adults were primarily due to impairments in movement extent control and not movement direction control. The normalized jerk was similar for the two age groups, but was not strongly associated with endpoint error or endpoint variance for either group. However, endpoint variance was strongly associated with endpoint error for both the young and older adults. Finally, trajectory error was similar for both groups and was weakly associated with endpoint error for the older adults. The findings are not consistent with the predictions of the minimum variance theory, but support and extend previous observations that movement trajectories and endpoints are planned independently.  相似文献   

17.
We investigated adult age-differences in timing control of fast vs. slow repetitive movements using a dual-task approach. Twenty-two young (M = 24.23 yr) and 22 older adults (M = 66.64 yr) performed three cognitive tasks differing in working memory load and response production demands and they tapped series of 550-ms or 2100-ms target intervals. Single-task timing was comparable in both groups. Dual-task timing was characterized by shortening of produced intervals and increases in drift and variability. Dual-task costs for both cognitive and timing performances were pronounced at slower tapping tempos, an effect exacerbated in older adults. Our findings implicate attention and working memory processes as critical components of slow movement timing and sources of specific challenges thereof for older adults.  相似文献   

18.
The goal of an action can consist of generating a change in the environment (to produce an effect) or changing one's own situation in the environment (to move to a physical target). To investigate whether the mechanisms of effect-directed and target-directed action control are similar, participants performed continuous reversal movements. They either synchronized movement reversals with regularly presented tones (temporal targets) or produced tones at reversals isochronously (temporal effects). In both goal conditions an irrelevant goal characteristic was integrated into the goal representation (loudness, Experiment 1). When targets and effects were presented within the same reversal movement, similarities were enhanced (Experiment 2). When the task posed spatial demands in addition to temporal demands, target- and effect-directed movement kinematics changed equally with tempo (Experiment 3). Correlations between target-directed and effect-directed movements in temporal variability indicated similar timing mechanisms (Experiments 1 and 2). Only gradual differences between target- and effect-directed movements were observed. We conclude that the same mechanisms of action control, including the anticipation of upcoming events, underlie effect-directed and target-directed movements. Ideomotor theories of action control should incorporate action targets as goals similar to action effects. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

19.
The reported resolution of timing the moment of impact in fast human movements differs widely depending on the task. Surprisingly, better timing is reported for the demanding task of batting a ball than for the much simpler task of tapping in synchrony with two hands. We wondered whether this is because a sizeable part of timing variability arises from misjudging the distance in the direction of one's own movement, so that moving faster (as the bat does when moving toward a ball) improves timing. We found that moving faster does indeed improve timing in both the above-mentioned tasks. After removing the proposed contribution of misjudging the distance in the direction of one's own movement, we estimated that the remaining standard deviation in timing is just over 6ms for both tasks.  相似文献   

20.
In the present study, we characterize how the ability to decouple guiding visual information from a motor action emerges during childhood and adolescence. Sixty-two participants (age range 8–15 yrs.) completed two eye-hand coordination tasks. In a direct interaction task, vision and motor action were in alignment, and participants slid their finger along a vertical touch screen to move a cursor from a central target to one of four peripheral targets. In an eye-hand-decoupled task, eye and hand movements were made in different planes and cursor feedback was 180° reversed. We analyzed whether movement planning, timing and trajectory variables differed across age in both task conditions. There were no significant relationships between age and any movement planning, timing, or execution variables in the direct interaction task. In contrast, in the eye-hand-decoupled task, we found a relationship between age and several movement planning and timing variables. In adolescents (13–15 yrs.), movement planning and timing was significantly shorter than that of young children (8–10 yrs.). Eye-hand-decoupled maturation emerged mainly during late childhood (11–12 yrs.). Notably, we detected performance differences between young children and adolescents exclusively during the eye-hand decoupling task which required the integration of rule-based cognitive information into the motor action. Differences were not observed during the direct interaction task. Our results quantify an important milestone for eye-hand-decoupling development in late childhood, leading to improved rule-based motor performance in early adolescence. This eye-hand-decoupling development may be due to frontal lobe development linked to rule-based behavior and the strengthening of fronto-parietal networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号