首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both judgment studies and studies of feedforward reaching have shown that the visual perception of object distance, size, and shape are inaccurate. However, feedback has been shown to calibrate feedfoward reaches-to-grasp to make them accurate with respect to object distance and size. We now investigate whether shape perception (in particular, the aspect ratio of object depth to width) can be calibrated in the context of reaches-to-grasp. We used cylindrical objects with elliptical cross-sections of varying eccentricity. Our participants reached to grasp the width or the depth of these objects with the index finger and thumb. The maximum grasp aperture and the terminal grasp aperture were used to evaluate perception. Both occur before the hand has contacted an object. In Experiments 1 and 2, we investigated whether perceived shape is recalibrated by distorted haptic feedback. Although somewhat equivocal, the results suggest that it is not. In Experiment 3, we tested the accuracy of feedforward grasping with respect to shape with haptic feedback to allow calibration. Grasping was inaccurate in ways comparable to findings in shape perception judgment studies. In Experiment 4, we hypothesized that online guidance is needed for accurate grasping. Participants reached to grasp either with or without vision of the hand. The result was that the former was accurate, whereas the latter was not. We conclude that shape perception is not calibrated by feedback from reaches-to-grasp and that online visual guidance is required for accurate grasping because shape perception is poor.  相似文献   

2.
ABSTRACT To grasp an object the digits need to be placed at suitable positions on its surface. The selection of such grasping points depends on several factors. Here the authors examined whether being able to see 1 of the selected grasping points is such a factor. Subjects grasped large cylinders or oriented blocks that would normally be grasped with the thumb continuously visible and the final part of the index finger's trajectory occluded by the object in question. An opaque screen that hid the thumb's usual grasping point was used to examine whether individuals would choose a grip that was oriented differently to maintain vision of the thumb's grasping point. A transparent screen was used as a control. Occluding the thumb's grasping point made subjects move more carefully (adopting a larger grip aperture) and choose a slightly different grip orientation. However, the change in grip orientation was much too small to keep the thumb visible. The authors conclude that humans do not particularly aim for visible grasping points.  相似文献   

3.
Virtual reality (VR) technology is being used with increasing frequency as a training medium for motor rehabilitation. However, before addressing training effectiveness in virtual environments (VEs), it is necessary to identify if movements made in such environments are kinematically similar to those made in physical environments (PEs) and the effect of provision of haptic feedback on these movement patterns. These questions are important since reach-to-grasp movements may be inaccurate when visual or haptic feedback is altered or absent. Our goal was to compare kinematics of reaching and grasping movements to three objects performed in an immersive three-dimensional (3D) VE with haptic feedback (cyberglove/grasp system) viewed through a head-mounted display to those made in an equivalent physical environment (PE). We also compared movements in PE made with and without wearing the cyberglove/grasp haptic feedback system. Ten healthy subjects (8 women, 62.1 ± 8.8 years) reached and grasped objects requiring 3 different grasp types (can, diameter 65.6 mm, cylindrical grasp; screwdriver, diameter 31.6 mm, power grasp; pen, diameter 7.5 mm, precision grasp) in PE and visually similar virtual objects in VE. Temporal and spatial arm and trunk kinematics were analyzed. Movements were slower and grip apertures were wider when wearing the glove in both the PE and the VE compared to movements made in the PE without the glove. When wearing the glove, subjects used similar reaching trajectories in both environments, preserved the coordination between reaching and grasping and scaled grip aperture to object size for the larger object (cylindrical grasp). However, in VE compared to PE, movements were slower and had longer deceleration times, elbow extension was greater when reaching to the smallest object and apertures were wider for the power and precision grip tasks. Overall, the differences in spatial and temporal kinematics of movements between environments were greater than those due only to wearing the cyberglove/grasp system. Differences in movement kinematics due to the viewing environment were likely due to a lack of prior experience with the virtual environment, an uncertainty of object location and the restricted field-of-view when wearing the head-mounted display. The results can be used to inform the design and disposition of objects within 3D VEs for the study of the control of prehension and for upper limb rehabilitation.  相似文献   

4.
The sensorimotor transformations necessary for generating appropriate motor commands depend on both current and previously acquired sensory information. To investigate the relative impact (or weighting) of visual and haptic information about object size during grasping movements, we let normal subjects perform a task in which, unbeknownst to the subjects, the object seen (visual object) and the object grasped (haptic object) were never the same physically. When the haptic object abruptly became larger or smaller than the visual object, subjects in the following trials automatically adapted their maximum grip aperture when reaching for the object. This adaptation was not dependent on conscious processes. We analyzed how visual and haptic information were weighted during the course of sensorimotor adaptation. The adaptation process was quicker and relied more on haptic information when the haptic objects increased in size than when they decreased in size. As such, sensory weighting seemed to be molded to avoid prehension error. We conclude from these results that the impact of a specific source of sensory information on the sensorimotor transformation is regulated to satisfy task requirements.  相似文献   

5.
Milner AD  Ganel T  Goodale MA 《Trends in cognitive sciences》2012,16(5):256-7; discussion 258-9
A recently published study of grasping in patient D.F. challenges the well-known dissociation between vision-for-perception and vision-for-action, suggesting instead that D.F.'s preserved grip scaling depends entirely on haptic feedback. We argue that the results of the study are in fact fully consistent with the perception-action account.  相似文献   

6.
Abstract

Recent evidence suggests that visual feedback influences the adjustment of grip force to the changing load force exerted by a grasped object as it is manipulated. The current project investigated how visual feedback of object kinematics affects the coupling of grip force to load force by scaling the apparent displacements of the object viewed in virtual reality. Participants moved the object to manually track a moving virtual target. The predictability of the changing load force exerted by the object was also manipulated by altering the nature of target trajectories (and therefore the nature of object motions). When apparent object displacements increased in magnitude, grip force became more tightly coupled to load force over time. Furthermore, when load force variations were less predictable, the magnitude of apparent object displacements affected the relative degree of continuous versus intermittent coupling of grip force to load force. These findings show that visual feedback of object motion affects the ongoing dynamical coupling between grip force control and load force experienced during manipulation of a grasped object.  相似文献   

7.
In two size-conflict experiments, children viewed various squares through a reducing (1/2) lens while manually grasping them through a hand-concealing cloth. Then, using either vision or touch, they selected a match from a set of comparison squares. Forty 6-, 9-, and 12-year-olds participated in Experiment 1. Vision dominated the visual estimates of all three age groups; however, for the haptic estimates, the dominant modality varied developmentally: Vision dominated the 6-year-olds' haptic estimates, whereas neither modality dominated the 9-year-olds' haptic estimates, and touch dominated the 12-year-olds' haptic estimates. In Experiment 2, 24 six-year-olds were tested, as in Experiment 1; however, half of them were shown the size-distorting effects of the lens just prior to testing. Although this reduced the visual dominance of their haptic estimates, the effect was weak and short-lived. The haptic dominance seen in the data of the 12-year-olds was conspicuously absent.  相似文献   

8.
In two size-conflict experiments, children viewed various squares through a reducing (1/2) lens while manually grasping them through a hand-concealing cloth. Then, using either vision or touch, they selected a match from a set of comparison squares. Forty 6-, 9-, and 12-year-olds participated in Experiment 1. Vision dominated the visual estimates of all three age groups; however, for the haptic estimates, the dominant modality varied developmentally: Vision dominated the 6-year-olds’ haptic estimates, whereas neither modality dominated the 9-year-olds’ haptic estimates, and touch dominated the 12-ear-olds’ haptic estimates. In Experiment 2, 24 six-year-olds were tested, as in Experiment 1; however, half of them were shown the size-distorting effects of the lens just prior to testing. Although this reduced the visual dominance of their haptic estimates, the effect was weak and short-lived. The haptic dominance seen in the data of the 12-year-olds was conspicuously absent.  相似文献   

9.
A distinction between planning and control can be used to explain the effects of context-induced illusions on actions. The present study tested the effects of the Ebbinghaus illusion on the planning and control of the grip aperture in grasping a disk. In two experiments, the illusion had an effect on grip aperture that decreased as the hand approached the target, whether or not visual feedback was available. These results are taken as evidence in favor of a planning/control model, in which planning is susceptible to context-induced illusions, whereas control is not. It is argued that many dissociations between perception and action may better be explained as dissociations between perception and on-line control.  相似文献   

10.
Psychophysical studies reveal distortions in perception of distance and shape. Are reaches calibrated to eliminate distortions? Participants reached to the front, side, or back of a target sphere. In Experiment 1, feedforward reaches yielded distortion and outward drift. In Experiment 2, haptic feedback corrected distortions and instability. In Experiment 3, feedforward reaches with only haptic experience of targets replicated the shape distortions but drifted inward. This showed that outward drift in Experiment 1 was visually driven. In Experiment 4, visually guided reaches were accurate when participants used binocular vision but when they used monocular vision, reaches were distorted. Haptic feedback corrected inaccuracy and instability of distance but did not correct monocular shape distortions. Dynamic binocular vision is representative and accurate and merits further study.  相似文献   

11.
The geographical slants of hills are known to appear quite exaggerated. Here, we examine the visual and haptic perception of the geographical slant of surfaces within reach under full-cue conditions and show that the perceived orientation of even these surfaces is biased. An exaggeration with respect to deviations from horizontal is shown to be present cross-modally. Experiment 1 employed numerical estimation to show the effect for visually observed surfaces, while controlling for verbal numerical bias. Experiment 2 demonstrated that the bias is present even when manual measures show good calibration. Experiment 3 controlled for direction of gaze. Experiment 4 measured the same bias for haptic surfaces. Experiment 5 showed that the bias can also be observed using the nonnumeric task of angle bisection. These results constrain theories of geographical slant perception and appear most consistent with functional scale expansion of deviations from horizontal.  相似文献   

12.
Contextual cues such as linear perspective and relative size can exert a powerful effect on the perception of objects. This fact is demonstrated by the illusory effects that can be induced by such cues (e.g., the Ponzo railway track and Titchener circles illusions). Several recent studies have reported, however, that visual illusions based on such cues have little or no influence on the visuomotor mechanisms used to guide hand action. Furthermore, evidence of this sort has been cited in support of a distinction between visual perception and the visual control of action. In the current study, the authors investigated the effect of the Ponzo visual illusion on the control of hand action, specifically, the scaling of grip force and grip aperture during prehension movements. The results demonstrate that grip force scaling is significantly influenced by the Ponzo visual illusion, whereas the scaling of grip aperture is unaffected by the illusion.  相似文献   

13.
Patients with right unilateral cerebral stroke, four of which showed acute hemispatial neglect, and healthy aged-matched controls were tested for their ability to grasp objects located in either right or left space at near or far distances. Reaches were performed either in free vision or without visual feedback from the hand or target object. It was found that the patient group showed normal grasp kinematics with respect to maximum grip aperture, grip orientation, and the time taken to reach the maximum grip aperture. Analysis of hand path curvature showed that control subjects produced straighter right hand reaches when vision was available compared to when it was not. The right hemisphere lesioned patients, however, showed similar levels of curvature in each of these conditions. No behavioural differences, though, could be found between right hemisphere lesioned patients with or without hemispatial neglect on either grasp parameters, path deviation or temporal kinematics.  相似文献   

14.
In four experiments, we examined the haptic recognition of 3-D objects. In Experiment 1, blindfolded participants named everyday objects presented haptically in two blocks. There was significant priming of naming, but no cost of an object changing orientation between blocks. However, typical orientations of objects were recognized more quickly than nonstandard orientations. In Experiment 2, participants accurately performed an unannounced test of memory for orientation. The lack of orientation-specific priming in Experiment 1, therefore, was not because participants could not remember the orientation at which they had first felt an object. In Experiment 3, we examined haptic naming of objects that were primed either haptically or visually. Haptic priming was greater than visual priming, although significant cross-modal priming was also observed. In Experiment 4, we tested recognition memory for familiar and unfamiliar objects using an old-new recognition task. Objects were recognized best when they were presented in the same orientation in both blocks, suggesting that haptic object recognition is orientation sensitive. Photographs of the unfamiliar objects may be downloaded from www.psychonomic.org/archive.  相似文献   

15.
The authors employed a virtual environment to investigate how humans use haptic and visual feedback in a simple, rhythmic object-manipulation task. The authors hypothesized that feedback would help participants identify the appropriate resonant frequency and perform online control adjustments. The 1st test was whether sensory feedback is needed at all; the 2nd was whether the motor system combines visual and haptic feedback to improve performance. Task performance was quantified in terms of work performed on the virtual inertia, ability to identify the correct rhythm, and variability of movement. Strict feedforward control was found to be ineffective for this task, even when participants had previous knowledge of the rhythm. Participants (N = 11) performed far better when feedback was available (11 times more work, 2.2 times more precise frequency, 30% less variability; p < .05 for all 3 performance measures). Using sensory feedback, participants were able to rapidly identify 4 different spring-inertia systems without foreknowledge of the corresponding resonant frequencies. They performed over 20% more work with 24% less variability when provided with both visual and haptic feedback than they did with either feedback channel alone (p < .05), providing evidence that they integrated online sensory channels. Whereas feedforward control alone led to poor performance, feedback control led to fast tuning or calibration of control according to the resonant frequency of the object, and to better control of the rhythmic movement itself.  相似文献   

16.
The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic‐haptic (T‐T) and haptic‐visual (T‐V) discrimination of curvature in a short‐term memory paradigm, using 30‐second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial‐motor representation. Experiment 2 compared visual‐visual (V‐V) and visual‐haptic (V‐T) short‐term memory, again using 30‐second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra‐modal visual performance and cross‐modal performance were similar. Comparing the four modality conditions (inter‐modal V‐T, T‐V; intra‐modal V‐V, T‐T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2).  相似文献   

17.
The aim of the present paper was to investigate how the kinematics of a hand reaching toward a visual target would be influenced by haptic and proprioceptive input from an unseen distractor actively grasped in the other, nonreaching hand. The main results were that the amplitude of maximum grip aperture was smaller and the time to maximum grip aperture was earlier when the distractor was smaller than the target. The interference effect from the distractor was similar for both hands as they reached. Furthermore, results from a vibrating-distractor condition for passive tactile input revealed that the interference effects were evident only when the distractor was actively grasped. We suggest that neural processing of proprioceptive and tactile information relevant to distractor size produced the observed interference effects. We also emphasize the importance of active manipulation of the distractor stimulus in eliciting such interference effects.  相似文献   

18.
Three experiments on grip morphology and hand use were conducted in a sample of chimpanzees. In Experiment 1, grip morphology when grasping food items was recorded, and it was found that subjects who adopted a precision grip were more right-handed than chimpanzees using other grips. In Experiment 2, the effect of food type on grasping was assessed. Smaller food items elicited significantly more precision grips for the right hand. In Experiment 3, error rates in grasping foods were compared between the left and right hands. Significantly more errors were made for the left compared with the right hand. The cumulative results indicate that chimpanzees show a left-hemisphere asymmetry in motor skill that is associated with the use of precision grips.  相似文献   

19.
Tactile-based pantomime-grasping requires that a performer use their right hand to ‘grasp’ a target previously held in the palm of their opposite hand – a task examining how mechanoreceptive (i.e., tactile) feedback informs the motor system about an object property (i.e., size). Here, we contrasted pantomime-grasps performed with (H+) and without (H?) haptic feedback (i.e., thumb and forefinger position information derived from the grasping hand touching the object) with a condition providing visual KR (VKR) related to absolute target object size. Just-noticeable-difference (JND) scores were computed to determine whether responses adhered to – or violated – Weber's law. JNDs for H+ trials violated the law, whereas H? and VKR trials adhered to the law. Accordingly, results demonstrate that haptic feedback – and not KR – supports an absolute tactile-haptic calibration.  相似文献   

20.
Grasping is a complex action which requires high-level motor control. Although the impact of aging on grasping has been investigated in some studies, to date little is known as to how the aging process interacts with the purpose of the movement. The aims of the present study were (i) to investigate the effect of aging on grasping movements, and to explore on how this effect is modulated by (ii) the goal of the task, and by (iii) the characteristics of the target such as its location in the visual field, its orientation and its size. Young and elderly adults were asked to grasp to move or to grasp to use objects of different sizes and orientations, presented either in the central or the peripheral visual field. Movement duration did not differ between the two groups. However, elderly participants required a longer approach phase and showed a different grasping strategy, characterized by larger grip aperture and smaller percentage of wrist rotation in comparison to young adults. Elderly adults showed a decrease in accuracy when grasping objects presented in the peripheral, but not in the central visual field. A similar modulation of the kinematic parameters consisting in longer planning and execution phases in the grasp to use in comparison to the grasp to move condition was observed in both groups, suggesting that the effect of aging might be minimized and compensated in more goal-directed tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号