首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation assessed a difference in the dynamic balance abilities of 30 learning disabled and 30 nondisabled children of elementary-school age. Only distance traveled across the beam, a novel task, was significantly different between groups; no other effects were significant. Nondisabled subjects traveled further across the beam before losing balance than learning disabled children.  相似文献   

2.
3.
More gestures than answers: children learning about balance   总被引:1,自引:0,他引:1  
  相似文献   

4.
Processes of attitude learning were investigated through a game requiring discrimination between good and bad objects, where feedback about object valence (involving gain or loss) is contingent on approach. Previous research demonstrates a preponderance of false‐negative errors, with some good objects (‘learning asymmetry’) and most novel objects (‘generalization asymmetry’) being judged as bad, but provides no direct evidence concerning how participants appraise alternative strategies and their own performance. To compare alternative strategies, participants received advice, supposedly from a previous participant, that most objects were bad and should be avoided, or good and should be approached. Learning and generalization asymmetries were replicated, especially among participants who followed the former (risk‐averse) advice. Additionally, participants' evaluations of their own game strategy were inversely related to amount of negative feedback (the number of bad objects approached), but unrelated to positive feedback (from good objects approached), pointing to the salience of negative information for self‐appraisals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of this study was to demonstrate, by means of systematic research and qualitative data analysis, the presence, among a group of patients with fronto‐temporal lobar degeneration of a subgroup that, at variance with the standard pattern, is able to devise and implement learning strategies, but appear impaired at carrying them on from a trial to the next. In order to provide evidence of the existence of a group of patients showing this type of learning disability, that we refer to as lack of strategy holding, we performed a stepwise hierarchical cluster analysis of a set of variables whose scores were selected from the subject's performance at the Test de Aprendizaje Verbal España‐Complutense. Results substantiate the segregation of three groups of subjects characterized by the following patterns of performance: normal elderly individuals, who show a quite preserved ability to discover a semantic strategy along the learning trials and to carry it from a trial to the next, patients presenting with a deficit in implementing semantic learning strategies and possibly use of serial and/or phonological strategies to perform the task, and to patients who, although able to generate and implement appropriate learning strategies, appear unable to carry them over the learning trials. The presence of this new pattern raises a few questions that seem worth trying to address.  相似文献   

6.
The present study assessed the role of context in the acquisition and transfer of a mathematical strategy. One hundred and six children were assigned to four conditions: direct strategy instruction, guided discovery, direct teaching plus discovery, or a control condition. The intervention consisted of fourteen sessions during which the number-family strategy, useful for addition and subtraction, was taught. Third grade students in the guided discovery condition performed better than those in the direct instruction condition on far transfer problems that measured deep conceptual understanding. Students who had total or partial exposure to guided discovery held stronger beliefs and adopted more positive goals about the importance of mathematical understanding and peer collaboration, attributed less importance to task extrinsic reasons for success, and reported greater use of deep processing strategies than students exposed to direct, explicit instructions. Finally, students in the discovery conditions were able to communicate more effectively during problem solving than students in the direct instructions condition.  相似文献   

7.
Insight and strategy in multiple-cue learning   总被引:3,自引:0,他引:3  
In multiple-cue learning (also known as probabilistic category learning) people acquire information about cue-outcome relations and combine these into predictions or judgments. Previous researchers claimed that people can achieve high levels of performance without explicit knowledge of the task structure or insight into their own judgment policies. It has also been argued that people use a variety of suboptimal strategies to solve such tasks. In three experiments the authors reexamined these conclusions by introducing novel measures of task knowledge and self-insight and using "rolling regression" methods to analyze individual learning. Participants successfully learned a four-cue probabilistic environment and showed accurate knowledge of both the task structure and their own judgment processes. Learning analyses suggested that the apparent use of suboptimal strategies emerges from the incremental tracking of statistical contingencies in the environment.  相似文献   

8.
The design of recommendation strategies in the adaptive learning systems focuses on utilizing currently available information to provide learners with individual-specific learning instructions. As a critical motivate for human behaviours, curiosity is essentially the drive to explore knowledge and seek information. In a psychologically inspired view, we propose a curiosity-driven recommendation policy within the reinforcement learning framework, allowing for an efficient and enjoyable personalized learning path. Specifically, a curiosity reward from a well-designed predictive model is generated to model one's familiarity with the knowledge space. Given such curiosity rewards, we apply the actor–critic method to approximate the policy directly through neural networks. Numerical analyses with a large continuous knowledge state space and concrete learning scenarios are provided to further demonstrate the efficiency of the proposed method.  相似文献   

9.
10.
We examined whether the attentional focus induced by a suprapostural task has an influence on the learning of a dynamic balance task. Participants balanced on a stabilometer and were required to hold a tube horizontal with both hands. In Experiment 1, the tube contained a table tennis ball, whereas it was empty in Experiment 2. Participants were instructed to focus on either their hands (internal focus) or the tube (external focus). We measured balance performance as a function of attentional focus on the suprapostural task. Participants practised for 2 days, and on Day 3 they performed a retention test (with tube) and a transfer test (without tube). In both experiments, the external focus groups demonstrated more effective retention and transfer than the internal focus groups (and than the control group in transfer in Experiment 2). In addition, in Experiment 1 the external group was superior in keeping the tube horizontal. This suggests that the performer's attentional focus regarding the suprapostural task affects performance and learning not only of the suprapostural task itself, but also of the postural task.  相似文献   

11.
For many students concepts like fluid and crystallized intelligence are difficult to learn because they have highly‐similar definitions that are easy to confuse. The challenge of learning these highly‐similar, yet often confused concepts is further complicated by the fact that students are tested on exams about differences between the concepts. In this theoretically‐motivated research we test a new strategy for learning highly‐similar pairs of concepts, called differential‐associative processing. The results revealed that performance on multiple‐choice questions was higher when students learned highly‐similar concepts using differential‐associative processing rather than a strategy of their own choice, text‐based elaboration, or identifying similarities and differences. The results also revealed that students spontaneously transferred differential‐associative processing to a neutral control condition. Taken as a whole, the present study supports differential‐associative processing as a useful strategy for learning similar concepts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A growing body of research supports cooperative learning as an effective teaching strategy. A specific cooperative learning strategy, Team-based Learning, was applied to a convenience sample of four undergraduate sophomore-level motor behavior courses over four semesters from Fall 2002 to Spring 2004 to examine whether this strategy would affect students' learning styles. The data from the Grasha-Reichmann Student Learning Style Scales indicated that this teaching strategy was associated with a significant decrease in the negative Avoidant and Dependent learning styles and an improvement in the positive Participant learning style.  相似文献   

13.
Among other things, K. J. Rust and T. S. Kendler (1987, Developmental Review, 7, 326–362) tested and disconfirmed the Tighes' independent subproblem learning hypothesis experimentally. The Tighes defended themselves by claiming that independent subproblem learning (ISPL) is a label, not a hypothesis and that our tests were invalid. In this reply we showed that ISPL is either an erroneous hypothesis or a misnomer because our tests were valid demonstrations that for young children the so-called “subproblems” are dependent rather than independent.  相似文献   

14.
Obesity is associated with an increased risk of falls. The purpose of this study was to investigate the effects of obesity on balance recovery using an ankle strategy. In addition, computer simulations to understand how increased inertia and weight associated with obesity independently influence balance recovery. Ten normal weight (BMI: 22.7 ± 0.6 kg/m2) and ten obese (BMI: 32.2 ± 2.2 kg/m2) adult male subjects participated in the study. Subjects recovered balance using an ankle strategy after three types of postural perturbations: an initial angular displacement, an initial angular velocity from the natural stance, and an initial angular velocity from a prescribed position. Balance recovery was quantified by the largest initial angular displacement or angular velocity from which balance could be recovered. Obesity impaired balance recovery from perturbations involving an initial angular velocity, but not from an initial angular displacement. Similarly, computer simulations determined that increased inertia is beneficial to balance recovery when there is little to no initial angular velocity. These findings indicate that the effects of obesity on balance recovery are dependent on the type of perturbation, and that increased inertia associated with obesity can be beneficial for perturbations that involve little to no initial angular velocity.  相似文献   

15.
16.
17.
The multiple memory systems hypothesis proposes that different types of learning strategies are mediated by distinct neural systems in the brain. Male and female mice were tested on a water plus-maze task that could be solved by either a place or response strategy. One group of mice was pre-exposed to the same context as training and testing (PTC) and the other group was pre-exposed to a different context (PDC). Our results show that the PTC condition biased mice to place strategy use in males, but this bias was dependent on the presence of ovarian hormones in females.The participation of different brain areas in place and response learning strategies has been studied extensively (White and McDonald 2002; Gold 2004; Mizumori et al. 2004). Place strategy is an allocentric navigation strategy that depends on extramaze cues. Response strategy is an egocentric navigation strategy based on proprioceptive cues. Inactivation of the hippocampus biased animals to response strategy use, and inactivation of the striatum biased animals to place strategy use (Packard and McGaugh 1996; Lee et al. 2008). Furthermore, glutamate infusion into the hippocampus strengthened place strategy use and, conversely, glutamate infusion into the striatum enhanced response strategy use (Packard 1999). These studies suggest that the hippocampus system mediates place strategy, while the striatum system mediates response strategy.Various factors can modulate learning strategy use, including training intensity (Packard and McGaugh 1996; Martel et al. 2007). A recent study investigated the influence of training on strategy use on a probe trial conducted 1 h after training (Martel et al. 2007). Male mice displayed enhanced place strategy use when trained on 12 or 22 trials compared with four trials, suggesting an effect of training intensity on strategy choice (Martel et al. 2007). This study further investigated the effect of pre-exposure to the training and testing context (PTC). Pre-exposure enhanced place strategy use in male mice after only four trials relative to animals pre-exposed to a different context (PDC). These results suggest that a sufficient exposure to the training and testing context promotes place strategy use in mice.The type of strategy used by rats is affected by both biological sex and gonadal steroids. Male rats typically employ a place strategy, especially during the early phase of training, on both land and water T-mazes (Packard and McGaugh 1992, 1996; Packard and Teather 1997). However, strategy use by female rats depends on hormonal conditions (Dohanich 2002; Dohanich et al. 2009). Place strategy is preferred by intact female rats on the day of proestrus when estradiol levels are elevated, and by ovariectomized rats treated with estradiol (Korol and Kolo 2002; Korol 2004; Korol et al. 2004). In contrast, response strategy is more often displayed by intact females on diestrus, and by ovariectomized females that did not receive estradiol replacement (Korol and Kolo 2002; Korol et al. 2004). To date, the effects of biological sex and gonadal steroids on learning strategy have not been studied in mice.In this study, we developed a modified version of the dual-solution water plus-maze task to further investigate the role of PTC compared with PDC in male and female mice. We hypothesized that strategy choice in both sexes would be dependent on context pre-exposure, and ovarian hormones would influence strategy choice in females. Our results show that PTC significantly enhanced place strategy use in male mice. Although there was no significant difference between PTC and PDC female mice, ovariectomy significantly reduced place strategy use in the PTC females, suggesting that ovarian hormones play a significant role in strategy use in female mice.Sixteen male and 39 female 129/Sve strain mice were obtained at 2–3 mo of age from Charles River Laboratories (Boston, MA). Mice were housed in groups of four on a 12/12 light/dark cycle (lights on at 07:00 h) with free access to food and water. All protocols followed the guidelines from a protocol approved by the Animal Care and Use Committee of Tulane University in accordance with National Institutes of Health Guide for the Care and Use of Laboratory Animals.Mice were pre-exposed for 5 min to the dry plus-maze either in the context of the subsequent training and testing (PTC), or in a different context in a different room (PDC), 30 min prior to the first training trial. The maze consisted of four clear Plexiglas arms (40 cm in length, 10 cm in width, and 40 cm in height). During the pre-exposure, mice were able to visit three arms of the maze. The rooms had different visual cues surrounding the maze. No extramaze cues were placed directly at the end of any arm. After the pre-exposure, the animal was placed in its home cage. The maze was wiped clean with 70% ethanol between trials.After pre-exposures, the maze was filled to 1.5 cm above the Plexiglas escape platform (15 cm in height) with room-temperature water colored opaque with white nontoxic tempera paint. Mice were trained in the water plus-maze task (Fig. 1A). The training was ended when the animals made six correct choices or reached nine trials. The animals that made fewer than four correct choices during training were not included in the study. Trials were continued until the mouse reached the platform or a maximum of 1 min. Each trial was separated by an intertrial interval of 4 min. Throughout the training trials, one arm (north) was blocked off by a white Plexiglas shield, creating a T-shaped maze. Mice were placed in the start arm of the maze (south) and were allowed to swim to the escape platform, which was consistently located in one arm of the maze for each animal and alternated between animals (east or west). Entry of the entire animal into the maze arm that contained the escape platform was scored as a correct response during the training trials, and entry of the entire animal into the maze arm that did not contain the escape platform was scored as an incorrect response. Mice were allowed to remain on the escape platform for 15 sec before being returned to their cages. Mice that failed to find the escape platform within 60 sec were manually guided to the platform. The water was distributed across all arms of the maze and the maze walls were wiped down to reduce intramaze cues between training and probe trials. One hour after training, mice were tested on a probe trial (Fig. 1B) in order to determine their relative use of “place” and “response” strategy. On the probe trial, mice were placed into the start arm 180° opposite the start arm used during training (i.e., end of the north arm) and were allowed to make an entry into either the east or west maze arm. The white Plexiglas shield blocked the south arm during the probe trial. Mice were designated as using place or response strategy based on the probe trial. Place strategy was designated as entry of the entire animal into the arm with the platform, and response strategy was designated as entry of the entire animal into the opposite arm.Open in a separate windowFigure 1.The effects of pre-exposure to the training and testing context (PTC) or to a different context (PDC) on strategy selection of male mice. (A) Schematic diagram of the water plus-maze. Mice were released from the south arm during training trials and from the north arm during the probe test. (B) More male mice used place strategy than response strategy when pre-exposed to the same context prior to training and testing (PTC, n = 5) compared with male mice pre-exposed to a different context (PDC, n = 7, P < 0.05). (C) Latency curves show the actual latency to escape to the platform. Two-way ANOVA (non-repeated measures) revealed no significant difference across training trials in escape latencies between PDC and PTC mice (P > 0.5), although a significant effect of trial indicated that mice reduced their escape latencies across trials (P < 0.001). Values represent mean ± S.E.M.Sixteen male mice were randomly divided into two groups based on pre-exposure context, PTC or PDC. Four of the 16 males were not included in the study for failure to reach criterion (four correct out of nine trials) or failure to escape to the platform due to floating, which is a behavior commonly seen in this strain (Wolfer et al. 1997). On the probe trial PTC males used the place strategy significantly more often than PDC males (P < 0.05, χ2 = 5.182, Fig. 1B). Four of five PTC males used place strategy, whereas only one of seven PDC males used place strategy. Pre-exposure of animals to the same or different context prior to training did not affect the latency to escape the platform during training. Latency to find the platform during training trials revealed a significant effect of trial (F(8,89) = 3.830, P = 0.0007, non-repeated measures two-way ANOVA) but not pre-exposure condition (F(1,89) = 0.103, P = 0.75, non-repeated measures two-way ANOVA; Fig. 1C). Moreover, the average swim speed of PDC male mice (6 ± 1.6 cm/sec, n = 7) was not significantly different than the average swim speed of PTC male mice (6 ± 2.5 cm/sec, n = 5; P = 0.34, t = 0.9 [t-test]). Together, these data suggest that the pre-exposure condition did not influence learning during the training period, but PTC did enhance place strategy use in the probe trial in male mice.Female mice at 3 mo of age were randomly divided into two groups: mice that would receive ovariectomy (Ovx), and a sham surgery group (Sh). Mice were anesthetized with a ketamine (80 mg/kg) and xylazine (8 mg/kg) mixture. The first group of mice (n = 20) received ovariectomy using a dorsolateral approach. The other group (n = 19) of female mice received sham surgery, which consisted of ovary exposure only. Animals were injected with the pain reliever, buprenorphine (5 mg/kg), immediately after the surgery. One week after the surgery, vaginal smears were collected from all females, including Ovx as handled controls, at the same time each morning by lavage to track their estrus cycles (Marcondes et al. 2002). After two regular cycles, Sh animals were trained and tested on the day of proestrus (high estradiol).Ovariectomy has been reported to affect anxiety levels (Walf et al. 2006), and anxiety levels may alter performance on water maze tasks. To assay possible anxiety differences between Sh and Ovx, female mice were tested on open field and elevated plus-maze (EPM) 2 wk after the surgery in a room different from the rooms used in water maze tasks. A single mouse was placed in the center of a white, Plexiglas chamber measuring 43 cm in length × 43 cm in width × 18 cm in height. The animal explored the novel environment for 15 min, and movements were monitored by a camera interfaced with a tracking system (US HVS Image). The area was divided into 16 virtual squares (10.75 × 10.75 cm) by the program, and the middle four squares were defined as the center area. The Plexiglas chamber was wiped clean with 70% ethanol between trials. The EPM consisted of four arms (5 cm in width × 30 cm in length) arranged perpendicularly in a plus shape and elevated 38 cm above the floor. Two arms were enclosed by 15.5-cm dark Plexiglas walls and two arms were open. Each animal was placed in the center of the EPM facing a closed arm and allowed to move freely for 5 min. Behavior was monitored by a camera interfaced with the tracking system.Animals with high anxiety levels tend to spend less time in the open arms of the EPM and in the center of the open field. The percent time spent in the open arms of the EPM by Ovx mice (37.9% ± 7.5%, n = 14) was not significantly different than the percent of time spent in the open arms by Sh mice (27.8% ± 6.2%, n = 15; P = 0.30, t = 1.1). The percent time spent in the center of the open field by Ovx mice (35.1% ± 7.1%, n = 14) was not significantly different from Sh mice (29.0% ± 7.1%, n = 15; P = 0.55, t = 0.61). These results indicate that ovarian hormones did not have a significant effect on the anxiety levels of the female mice tested in this study.Two weeks after the anxiety tests, the Ovx and Sh groups were divided randomly into two groups based on the pre-exposure context: Ovx PTC, Ovx PDC, Sh PTC, Sh PDC. Sh females with regular estrus cycles were trained and tested on the day of proestrus. Five Ovx and seven Sh animals were not included in the study because of floating, failing to reach criterion (four correct out of nine trials), or exhibiting irregular estrus cycles. Five of eight Sh PTC and only one of six Sh PDC females used place strategy; however, this difference was not significant (P > 0.05, χ2 = 2.94, Fig. 2A). Therefore, the pre-exposure condition did not significantly affect strategy use in females at proestrus.Open in a separate windowFigure 2.The effects of ovarian hormone status and pre-exposure to the training and testing (PTC) or to a different context (PDC) on strategy selection of female mice. (A) When pre-exposed to the same context prior to training and testing (PTC), more gonadally intact female mice at proestrus (Sh, n = 8) used place strategy than response strategy compared with ovariectomized female mice (Ovx, n = 8, P < 0.05). When pre-exposed to a context different than the training and testing context (PDC), gonadally intact female mice at proestrus (Sh, n = 6) and ovariectomized mice (Ovx, n = 6) used response strategy rather than place strategy. (B) Latency curves show the actual latency to escape to the platform. Two-way ANOVA (non-repeated measures) revealed no significant differences across training trials in escape latencies between sham and ovariectomized PTC and PDC mice (P > 0.5), although a significant effect of trial indicated that mice reduced their escape latencies across trials (P < 0.0001). Values represent mean ± S.E.M.Interestingly, ovariectomy did significantly affect strategy use in PTC females. Five of eight Sh PTC and only one of eight Ovx PTC females used place strategy (P < 0.05, χ2 = 4.267, Fig. 2A). One of six Sh PDC females and zero of the six Ovx PDC animals used place strategy (Fig. 2A). Therefore, both Sh and Ovx PDC females used response strategy, and ovarian hormones did not enhance place strategy use in PDC females (P > 0.05, χ2 = 1.09, Fig. 2A). Ovarian hormones did enhance place strategy use in PTC females. Furthermore, PTC did not enhance place strategy use in Ovx animals. Similar to males, there was a significant effect of training trial on latency to find the platform in female animals (F(8,189) = 10.32, P < 0.0001, Fig. 2B). Ovarian hormones or pre-exposure to either context also did not affect escape latency during training in PTC or PDC females (F(3,189) = 0.33, P = 0.80, Fig. 2B). In addition, there was no significant difference in the average swim speed between groups (F(3,14) = 0.15, P = 0.93, one-way ANOVA). The average swim speed for each group was as follows: Ovx PTC (5 ± 1.5 cm/sec, n = 5), Ovx PDC (5 ± 1.0 cm/sec, n = 4), Sh PTC (5 ± 1.8 cm/sec, n = 5), Sh PDC (6 ± 1.5 cm/sec, n = 4). The numbers of animals are lower because in some cases, speed was not measured. Together, these data suggest that ovarian hormones and pre-exposure condition did not influence learning during the training period, but ovarian hormones did enhance place strategy use in the probe trial in only PTC mice.Consistent with previous literature (Martel et al. 2007), we found that ∼80% of PTC males favored the use of place strategy. In addition, 63% of PTC females on proestrus also used place strategy. Ovx female mice used response strategy regardless of the pre-exposure condition. These results confirm that pre-exposure to the training and testing context significantly increased the use of place strategy or reduced response strategy in male mice, while female mice on proestrus were not significantly different than chance. Ovariectomy diminished the use of place strategy and enhanced response strategy use in our study, implicating ovarian hormones in strategy choice.Male rats rely initially on a hippocampus-dependent place strategy, and then switch to a striatum-based response strategy over training (Packard and McGaugh 1996; Packard 1999). This suggests that response strategy is incrementally learned with repeated exposure to the same task. However, a sufficient amount of time to explore the extramaze cues during or before training increased place strategy use in male mice (Martel et al. 2007). In addition, it has been proposed that the presence of an increased number of salient extramaze cues favors place strategy use in rats (Restle 1957). Therefore, it is possible that pre-exposing mice to the learning environment allowed them to build a cognitive map that facilitated the use of a spatial place strategy. Another possible advantage of pre-exposure for place strategy use is that it may reduce the impact of non-mnemonic factors, such as anxiety, on performance (Cain 1998). Indeed, it was shown that peripheral injection and infusion of anxiogenic drugs into the basolateral amygdala biased rats toward the use of response strategy (Packard 1999; Wingard and Packard 2008; Packard and Gabriele 2009).While PTC female mice were not significantly different than PDC female mice, ovariectomy did reduce place strategy choice in the PTC mice. An emerging theory proposes that estradiol modulates cognitive performance via shifts in learning strategy (Korol and Kolo 2002; Daniel and Lee 2004; Korol 2004; McElroy and Korol 2005; Zurkovsky et al. 2007). Shifts in strategy use occurred across the estrus cycle in rats such that the hippocampus-dependent strategy was favored when estradiol levels were high (Korol et al. 2004). Similarly, estradiol treatment in ovariectomized rats increased hippocampus-dependent place strategy and impaired response strategy use compared with nontreated ovariectomized females (Korol and Kolo 2002). Our results showing that the lack of ovarian hormones reduced place strategy and increased response strategy use in PTC mice are consistent with these studies.In summary, we present a new design to a traditional dual-solution land plus-maze. One issue with the land maze version of the task is that it requires food deprivation. The possible increase in the appetite as a result of ovariectomy (Wade 1975) or disruption in the estrus cycle in response to food deprivation (Daniel et al. 1999) could confound the results in females in tasks that present food reward. In order to avoid these confounds, we used a modified version of a water-escape plus-maze (Packard and Wingard 2004). In this design, compared with the water-escape plus-maze, the clear Plexiglas maze itself is filled with water, instead of placing the plus-maze into a water maze, allowing a better view of extramaze visual cues. However, unlike rats, mice tend to be prey animals when in the water; therefore they are highly motivated to escape the water (Francis et al. 1995; Van Dam et al. 2006). Consequently, the stressful nature of the task prevents mice from utilizing the spatial cues as efficiently (Frick et al. 2000). Therefore, we pre-exposed the mice to the maze while it was dry, allowing them to build a cognitive map before they were released in water. The water plus-maze is important not only for the design of future studies, but also for the evaluation of previous studies that investigated learning strategies using tasks dependent on food deprivation.  相似文献   

18.
Educational Kinesiology is a movement-based program designed to enhance academic performance and may also influence performance of motor skills. The purpose of this study was to determine whether the Educational Kinesiology techniques of repatterning and/or integration movements affected static balance of 60 learning disabled students, ranging in age from 7 to 11 yr. Subjects were matched on age and sex and assigned to one of three groups: control, movement, or repatterned. Children in the repatterned group received a 10-min. individual session of combined arm and leg movements coordinated with eye-placements prior to the start of the 6-wk. program. Both treatment groups then participated in a movement program for 5 min. twice a day, 5 days a week for 6 wk. The control group received no exposure to these special techniques. Static balance was pretested and posttested in each group using the Modified Stork Stand test. A one-way analysis of variance indicated a significant difference between groups. A Scheffé post hoc test showed that the repatterned group improved more than the movement group, who in turn improved more than the control group.  相似文献   

19.
Subtyping occurs when atypical examples are excluded from consideration in judging a category. In three experiments, we investigated whether subtyping can influence category learning. In each experiment, participants learned about a category where most, but not all, of the exemplars corresponded to a theme. The category structure included a subtyping dimension, which had one value for theme-congruent exemplars and another for exception exemplars. On the basis of work by Hayes, Foster, and Gadd (2003) and studies on social stereotyping, we hypothesized that this subtyping dimension would enable the participants to discount the exception exemplars, thereby facilitating category learning. Contrary to expectations, we did not find a subtyping effect with traditional category-learning procedures. By introducing the theme prior to learning, however, we observed increased effects on typicality ratings (Experiment 1) and facilitated learning of the category (Experiment 2). Experiment 3 provided direct evidence that introducing the theme prior to learning enhanced the subtyping effect and provided support for a knowledge-gating explanation of subtyping. We conclude that subtyping effects are strongest on already-learned concepts and that subtyping is unlikely to aid in the learning of new concepts, except in particular circumstances.  相似文献   

20.
BackgroundOnly 30 min of balance skill training can significantly improve behavioral and neuromuscular outcomes. However, it is unclear if such a rapidly acquired skill is also retained and transferred to other untrained balance tasks.Research questionWhat are the effects of a single balance training session on balance skill acquisition, retention, and transferability and on measures of neural plasticity examined by transcranial magnetic brain stimulation (TMS) and inter-muscular coherence?MethodsHealthy younger adults (n = 36, age 20.9, 18 M) were randomly assigned to: Balance training (BT); Active control (cycling training, CT) or non-active control (NC) and received a 20-min intervention. Before, immediately and ~ 7 days after the interventions, we assessed performance in the trained wobble board task, untrained static standing tasks and dynamic beam walking balance tasks. Underlying neural plasticity was assessed by tibialis anterior motor evoked potential, intracortical facilitation, short-interval intracortical inhibition and long-interval intracortical inhibition using TMS and by inter-muscular coherence.ResultsBT, but not CT (18%, d = 0.32) or NC (−1%, d = −0.02), improved balance performance in the trained, wobble board task by 207% (effect size d = 2.12). BT retained the acquired skill after a 1-week no-training period (136%, d = 1.57). No changes occurred in 4 measures of balance beam walking, in 8 measures of static balance, in 8 measures of intermuscular coherence, and in 4 TMS measures of supra-spinal plasticity (all p > 0.05).SignificanceHealthy young adults can learn a specific balance skill very rapidly but one should be aware that while such improvements were retained, the magnitude of transfer (32%, d = 0.94) to other balancing skills was statistically not significant. Additional studies are needed to determine the underlying neural mechanisms of rapid balance skill acquisition, retention, and transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号