首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods.

This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx.

Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.  相似文献   

2.
方杰  张敏强 《心理科学》2013,36(3):722-727
采用数据模拟技术比较了(偏差校正和未校正的)参数和非参数Bootstrap方法在简单中介效应分析中的表现。结果表明,1)偏差校正的Bootstrap法的总体表现优于未校正的Bootstrap方法,但在某些条件下会高估第Ⅰ类错误率,导致在 时的置信区间偏差较大。2)参数Bootstrap方法优于非参数Bootstrap方法,偏差校正的参数百分位残差Bootstrap法的综合表现最优,且具有适用范围广,对原始样本依赖性小的优点,最具实用性。  相似文献   

3.
Spiess  Martin  Jordan  Pascal  Wendt  Mike 《Psychometrika》2019,84(1):212-235

In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.

  相似文献   

4.
中介效应的检验方法和效果量测量:回顾与展望   总被引:3,自引:0,他引:3       下载免费PDF全文
通过中介效应检验方法之间的比较和效果量指标之间的比较,建议放弃将总效应c显著作为中介效应检验的前提条件,放弃基于直接效应c'显著性的完全和部分中介的提法,推荐使用偏差校正的百分位Bootstrap法直接对中介效应ab进行检验,使用κ2Rmed2等中介效果量指标并报告效果量的置信区间。作为示例,用R软件的MBESS软件包对某消防员饮食健康调查进行了中介效应检验和效果量测量。随后展望了中介效应检验方法和效果量测量的拓展方向。  相似文献   

5.
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special concern as the bias-corrected bootstrap is often recommended and used due to its higher statistical power compared with other tests. The second result is statistical power reaching an asymptote far below 1.0 and in some conditions even declining slightly as the size of the relationship between X and M, a, increased. Two computer simulations were conducted to examine these findings in greater detail. Results from the first simulation found that the increased Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap are a function of an interaction between the size of the individual paths making up the mediated effect and the sample size, such that elevated Type I error rates occur when the sample size is small and the effect size of the nonzero path is medium or larger. Results from the second simulation found that stagnation and decreases in statistical power as a function of the effect size of the a path occurred primarily when the path between M and Y, b, was small. Two empirical mediation examples are provided using data from a steroid prevention and health promotion program aimed at high school football players (Athletes Training and Learning to Avoid Steroids; Goldberg et al., 1996), one to illustrate a possible Type I error for the bias-corrected bootstrap test and a second to illustrate a loss in power related to the size of a. Implications of these findings are discussed.  相似文献   

6.
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such as the 1/T approximation method and the Bartlett's formula method may fail in finite samples and are vulnerable to non-normality. Resampling techniques such as the moving block bootstrap and the surrogate data method are competitive alternatives. In this study, we use a Monte Carlo simulation study and a real data example to compare asymptotic methods with the aforementioned resampling techniques. For each resampling technique, we consider both the percentile method and the bias-corrected and accelerated method for interval construction. Simulation results show that the surrogate data method with percentile intervals yields better performance than the other methods. An R package pautocorr is used to carry out tests evaluated in this study.  相似文献   

7.
Mediation models are often used as a means to explain the psychological mechanisms between an independent and a dependent variable in the behavioral and social sciences. A major limitation of the unstandardized indirect effect calculated from raw scores is that it cannot be interpreted as an effect-size measure. In contrast, the standardized indirect effect calculated from standardized scores can be a good candidate as a measure of effect size because it is scale invariant. In the present article, 11 methods for constructing the confidence intervals (CIs) of the standardized indirect effects were evaluated via a computer simulation. These included six Wald CIs, three bootstrap CIs, one likelihood-based CI, and the PRODCLIN CI. The results consistently showed that the percentile bootstrap, the bias-corrected bootstrap, and the likelihood-based approaches had the best coverage probability. Mplus, LISREL, and Mx syntax were included to facilitate the use of these preferred methods in applied settings. Future issues on the use of the standardized indirect effects are discussed.  相似文献   

8.
In an effort to find accurate alternatives to the usual confidence intervals based on normal approximations, this paper compares four methods of generating second‐order accurate confidence intervals for non‐standardized and standardized communalities in exploratory factor analysis under the normality assumption. The methods to generate the intervals employ, respectively, the Cornish–Fisher expansion and the approximate bootstrap confidence (ABC), and the bootstrap‐t and the bias‐corrected and accelerated bootstrap (BCa). The former two are analytical and the latter two are numerical. Explicit expressions of the asymptotic bias and skewness of the communality estimators, used in the analytical methods, are derived. A Monte Carlo experiment reveals that the performance of central intervals based on normal approximations is a consequence of imbalance of miscoverage on the left‐ and right‐hand sides. The second‐order accurate intervals do not require symmetry around the point estimates of the usual intervals and achieve better balance, even when the sample size is not large. The behaviours of the second‐order accurate intervals were similar to each other, particularly for large sample sizes, and no method performed consistently better than the others.  相似文献   

9.
Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.  相似文献   

10.
The authors argue that a robust version of Cohen's effect size constructed by replacing population means with 20% trimmed means and the population standard deviation with the square root of a 20% Winsorized variance is a better measure of population separation than is Cohen's effect size. The authors investigated coverage probability for confidence intervals for the new effect size measure. The confidence intervals were constructed by using the noncentral t distribution and the percentile bootstrap. Over the range of distributions and effect sizes investigated in the study, coverage probability was better for the percentile bootstrap confidence interval.  相似文献   

11.
The psychometric function relates an observer’s performance to an independent variable, usually a physical quantity of an experimental stimulus. Even if a model is successfully fit to the data and its goodness of fit is acceptable, experimenters require an estimate of the variability of the parameters to assess whether differences across conditions are significant. Accurate estimates of variability are difficult to obtain, however, given the typically small size of psychophysical data sets: Traditional statistical techniques are only asymptotically correct and can be shown to be unreliable in some common situations. Here and in our companion paper (Wichmann & Hill, 2001), we suggest alternative statistical techniques based on Monte Carlo resampling methods. The present paper’s principal topic is the estimation of the variability of fitted parameters and derived quantities, such as thresholds and slopes. First, we outline the basic bootstrap procedure and argue in favor of the parametric, as opposed to the nonparametric, bootstrap. Second, we describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested. Third, we show how one’s choice of sampling scheme (the placement of sample points on the stimulus axis) strongly affects the reliability of bootstrap confidence intervals, and we make recommendations on how to sample the psychometric function efficiently. Fourth, we show that, under certain circumstances, the (arbitrary) choice of the distribution function can exert an unwanted influence on the size of the bootstrap confidence intervals obtained, and we make recommendations on how to avoid this influence. Finally, we introduce improved confidence intervals (bias corrected and accelerated) that improve on the parametric and percentile-based bootstrap confidence intervals previously used. Software implementing our methods is available.  相似文献   

12.
方杰  张敏强 《心理学报》2012,44(10):1408-1420
针对中介效应ab的抽样分布往往不是正态分布的问题,学者近年提出了三类无需对ab的抽样分布进行任何限制且适用于中、小样本的方法,包括乘积分布法、非参数Bootstrap和马尔科夫链蒙特卡罗(MCMC)方法.采用模拟技术比较了三类方法在中介效应分析中的表现.结果发现:1)有先验信息的MCMC方法的ab点估计最准确;2)有先验信息的MCMC方法的统计功效最高,但付出了低估第Ⅰ类错误率的代价,偏差校正的非参数百分位Bootstrap方法的统计功效其次,但付出了高估第Ⅰ类错误率的代价;3)有先验信息的MCMC方法的中介效应区间估计最准确.结果表明,当有先验信息时,推荐使用有先验信息的MCMC方法;当先验信息不可得时,推荐使用偏差校正的非参数百分位Bootstrap方法.  相似文献   

13.
The psychometric function relates an observer's performance to an independent variable, usually a physical quantity of an experimental stimulus. Even if a model is successfully fit to the data and its goodness of fit is acceptable, experimenters require an estimate of the variability of the parameters to assess whether differences across conditions are significant. Accurate estimates of variability are difficult to obtain, however, given the typically small size of psychophysical data sets: Traditional statistical techniques are only asymptotically correct and can be shown to be unreliable in some common situations. Here and in our companion paper (Wichmann & Hill, 2001), we suggest alternative statistical techniques based on Monte Carlo resampling methods. The present paper's principal topic is the estimation of the variability of fitted parameters and derived quantities, such as thresholds and slopes. First, we outline the basic bootstrap procedure and argue in favor of the parametric, as opposed to the nonparametric, bootstrap. Second, we describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested. Third, we show how one's choice of sampling scheme (the placement of sample points on the stimulus axis) strongly affects the reliability of bootstrap confidence intervals, and we make recommendations on how to sample the psychometric function efficiently. Fourth, we show that, under certain circumstances, the (arbitrary) choice of the distribution function can exert an unwanted influence on the size of the bootstrap confidence intervals obtained, and we make recommendations on how to avoid this influence. Finally, we introduce improved confidence intervals (bias corrected and accelerated) that improve on the parametric and percentile-based bootstrap confidence intervals previously used. Software implementing our methods is available.  相似文献   

14.
When bivariate normality is violated, the default confidence interval of the Pearson correlation can be inaccurate. Two new methods were developed based on the asymptotic sampling distribution of Fisher's z′ under the general case where bivariate normality need not be assumed. In Monte Carlo simulations, the most successful of these methods relied on the (Vale & Maurelli, 1983, Psychometrika, 48, 465) family to approximate a distribution via the marginal skewness and kurtosis of the sample data. In Simulation 1, this method provided more accurate confidence intervals of the correlation in non-normal data, at least as compared to no adjustment of the Fisher z′ interval, or to adjustment via the sample joint moments. In Simulation 2, this approximate distribution method performed favourably relative to common non-parametric bootstrap methods, but its performance was mixed relative to an observed imposed bootstrap and two other robust methods (PM1 and HC4). No method was completely satisfactory. An advantage of the approximate distribution method, though, is that it can be implemented even without access to raw data if sample skewness and kurtosis are reported, making the method particularly useful for meta-analysis. Supporting information includes R code.  相似文献   

15.
It is good scientific practice to the report an appropriate estimate of effect size and a confidence interval (CI) to indicate the precision with which a population effect was estimated. For comparisons of 2 independent groups, a probability-based effect size estimator (A) that is equal to the area under a receiver operating characteristic curve and closely related to the popular Wilcoxon-Mann-Whitney nonparametric statistical tests has many appealing properties (e.g., easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We performed a simulation study to compare 9 analytic and 3 empirical (bootstrap) methods for constructing a CI for A that can yield very different CIs for the same data. The experimental design crossed 6 factors to yield a total of 324 cells representing challenging but realistic data conditions. Results were examined using several criteria, with emphasis placed on the extent to which observed CI coverage probabilities approximated nominal levels. Based on the simulation study results, the bias-corrected and accelerated bootstrap method is recommended for constructing a CI for the A statistic; bootstrap methods also provided the least biased and most accurate standard error of A. An empirical illustration examining score differences on a citation-based index of scholarly impact across faculty at low-ranked versus high-ranked research universities underscores the importance of choosing an appropriate CI method.  相似文献   

16.
Confidence intervals for an effect size can provide the information about the magnitude of an effect and its precision as well as the binary decision about the existence of an effect. In this study, the performances of five different methods for constructing confidence intervals for ratio effect size measures of an indirect effect were compared in terms of power, coverage rates, Type I error rates, and widths of confidence intervals. The five methods include the percentile bootstrap method, the bias-corrected and accelerated (BCa) bootstrap method, the delta method, the Fieller method, and the Monte Carlo method. The results were discussed with respect to the adequacy of the distributional assumptions and the nature of ratio quantity. The confidence intervals from the five methods showed similar results for samples of more than 500, whereas, for samples of less than 500, the confidence intervals were sufficiently narrow to convey the information about the population effect sizes only when the effect sizes of regression coefficients defining the indirect effect are large.  相似文献   

17.
In the present article, functions written in the freeware R are presented that calculate several measures from traditional signal detection theory for each individual in a sample, along with summary statistics for the sample. Bias-corrected and accelerated bootstrap confidence intervals are also produced. Arguments are made for using an alternative approach—multilevel generalized linear models—and a function is presented for it. These functions are part of the R package sdtalt, which is available on the Comprehensive R Archive Network. Recent data from memory recognition studies are used to illustrate these functions.  相似文献   

18.
A frequent topic of psychological research is the estimation of the correlation between two variables from a sample that underwent a selection process based on a third variable. Due to indirect range restriction, the sample correlation is a biased estimator of the population correlation, and a correction formula is used. In the past, bootstrap standard error and confidence intervals for the corrected correlations were examined with normal data. The present study proposes a large-sample estimate (an analytic method) for the standard error, and a corresponding confidence interval for the corrected correlation. Monte Carlo simulation studies involving both normal and non-normal data were conducted to examine the empirical performance of the bootstrap and analytic methods. Results indicated that with both normal and non-normal data, the bootstrap standard error and confidence interval were generally accurate across simulation conditions (restricted sample size, selection ratio, and population correlations) and outperformed estimates of the analytic method. However, with certain combinations of distribution type and model conditions, the analytic method has an advantage, offering reasonable estimates of the standard error and confidence interval without resorting to the bootstrap procedure's computer-intensive approach. We provide SAS code for the simulation studies.  相似文献   

19.
The standard Pearson correlation coefficient, r, is a biased estimator of the population correlation coefficient, ρ(XY) , when predictor X and criterion Y are indirectly range-restricted by a third variable Z (or S). Two correction algorithms, Thorndike's (1949) Case III, and Schmidt, Oh, and Le's (2006) Case IV, have been proposed to correct for the bias. However, to our knowledge, the two algorithms did not provide a procedure to estimate the associated standard error and confidence intervals. This paper suggests using the bootstrap procedure as an alternative. Two Monte Carlo simulations were conducted to systematically evaluate the empirical performance of the proposed bootstrap procedure. The results indicated that the bootstrap standard error and confidence intervals were generally accurate across simulation conditions (e.g., selection ratio, sample size). The proposed bootstrap procedure can provide a useful alternative for the estimation of the standard error and confidence intervals for the correlation corrected for indirect range restriction.  相似文献   

20.
Rudas, Clogg, and Lindsay (1994, J. R Stat Soc. Ser. B, 56, 623) introduced the so-called mixture index of fit, also known as pi-star (π*), for quantifying the goodness of fit of a model. It is the lowest proportion of ‘contamination’ which, if removed from the population or from the sample, makes the fit of the model perfect. The mixture index of fit has been widely used in psychometric studies. We show that the asymptotic confidence limits proposed by Rudas et al. (1994, J. R Stat Soc. Ser. B, 56, 623) as well as the jackknife confidence interval by Dayton ( 2003 , Br. J. Math. Stat. Psychol., 56, 1) perform poorly, and propose a new bias-corrected point estimate, a bootstrap test and confidence limits for pi-star. The proposed confidence limits have coverage probability much closer to the nominal level than the other methods do. We illustrate the usefulness of the proposed method in practice by presenting some practical applications to log-linear models for contingency tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号