首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated glucocorticoid-dopaminergic interactions in modulating retrieval of long-term memory in an inhibitory avoidance task. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment of the apparatus was recorded. Systemically administered corticosterone (1 or 3 mg/kg) given to rats 30 min before retention testing impaired their memory retrieval, but the lower dose was more effective than the higher one. Administration of the dopamine (DA) D2 receptor antagonist sulpiride (6 or 20 mg/kg) 30 min before corticosterone attenuated the impairing effects of corticosterone (1 mg/kg) on memory retrieval. Administration of the DA D1 receptor antagonist SCH23390 (25 or 50 microg/kg) had no effect on corticosterone-induced impairment of memory retrieval. Further, applied doses of sulpiride or SCH23390 alone were ineffective in modulating memory retrieval. These findings provide evidence for the existence of an interaction between glucocorticoids and DA D2 receptor on memory retrieval process.  相似文献   

2.
The persistence of new memory traces in the hippocampus, encoded following appropriate activation of glutamatergic receptors and the induction of synaptic plasticity, can be influenced by heterosynaptic activation of neuromodulatory brain systems. We therefore investigated the effects of a hippocampus-specific blockade of dopamine D1/D5 receptors on the persistence of spatial memory encoded in one trial using a delayed matching-to-place (DMP) task in a watermaze in which rats learn a new escape location each day. A within-subjects design was used such that both short (20 min) and long (6 h) retention intervals, and both drug (SCH23390, a D1/D5 receptor antagonist) and vehicle (aCSF) infusions were tested on different days in the same animals. Bilateral intrahippocampal infusion of SCH23390 (5 microg in 1 microL per side) prior to trial 1 (encoding) caused a differential impairment as a function of memory delay-with no effect during trial 2 (memory retrieval) after a 20-min interval, but a block of memory at 6 h. Further experiments revealed that infusion of SCH23390 immediately after trial 1 had no effect on retention 6 h later, and the poor memory seen at long retention intervals when the drug was present at encoding was not due to a state-dependent failure of retrieval. These results suggest that activation of D1/D5 receptors during memory encoding is necessary for the formation of a persistent memory trace in the hippocampus. The complementary effects of D1/D5 receptor blockade on the persistence of LTP and the duration of memory are consistent with the idea that changes in synaptic strength underlie memory.  相似文献   

3.
Reconsolidation of declarative memory in humans   总被引:1,自引:0,他引:1       下载免费PDF全文
The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not the human declarative one. Here we provide evidence for both consolidation and reconsolidation in a paired-associate learning (i.e., learning an association between a cue syllable and the respective response syllable). Subjects were given two training sessions with a 24-h interval on distinct verbal material, and afterward, they received at testing two successive retrievals corresponding to the first and second learning, respectively. Two main results are noted. First, the first acquired memory was impaired when a reminder was presented 5 min before the second training (reconsolidation), and also when the second training was given 5 min instead of 24 h after the first one (consolidation). Second, the first retrieval proved to influence negatively on the later one (the retrieval-induced forgetting [RIF] effect), and we used the absence of this RIF effect as a very indicator of the target memory impairment. We consider the demonstration of reconsolidation in human declarative memory as backing the universality of this phenomenon and having potential clinical relevance. On the other hand, we discuss the possibility of using the human declarative memory as a model to address several key topics of the reconsolidation hypothesis.  相似文献   

4.
The dorsolateral and medial prefrontal cortex are critical for immediate memory processing. The possibility has been raised that those two areas may also contribute to long-term memory formation. Here, we studied the role of specific receptors in dorsolateral and medial prefrontal cortex in immediate and in long-term memory formation of one-trial inhibitory avoidance. Four different specific receptor ligands were infused into these two areas: the dopamine D1 receptor antagonist, SCH23390, the GABA(A) receptor agonist, muscimol, the AMPA glutamatergic receptor antagonist, ciano-nitro-quinoxaline-dione (CNQX), and the NMDA glutamatergic receptor antagonist, aminophosphonovaleric acid (AP5). In all cases the doses used had been previously shown to affect immediate or long-term memory. In the experiments on immediate memory the drugs were given 5 min before training and the animals were tested 3s post-training. These animals were then also tested 24h later for long-term memory. The effect of the treatments on long-term memory was studied by their infusion 0, 90, 180 or 270 min post-training, testing the animals 24h after training. Immediate memory was inhibited by SCH23390, muscimol and CNQX, but not by AP5, given into any of the two subregions. Long-term memory formation was inhibited by SCH23390, muscimol and CNQX, but not by AP5, given pre-training or 0, 90 or 180 but not 270 min post-training into the dorsolateral region; or 90 but not 0 or 180 min post-training into the medial region. Thus, there is a time- and receptor-dependent correlation in the two areas between their role in immediate and in long-term memory processing. Both roles require intact glutamate AMPA and dopamine D1 receptors, are inhibited by GABAergic synapses, and are unaffected by AP5. In the dorsolateral prefrontal cortex the link between immediate and long-term memory appears to be direct; in the medial area the link suffers a 90 min delay.  相似文献   

5.
We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.  相似文献   

6.
Memory reconsolidation is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. The reminder is the event that begins with the presentation of the learned cue and triggers the labilization-reconsolidation process. Since the early formulation of the hypothesis, several controversial items have arisen concerning the conditions that define reconsolidation. It is herein proposed that two diagnostic features characterize reconsolidation, namely: the labilization of the reactivated memory and the specificity of the reminder structure. To study this proposal, subjects received two different training sessions on verbal material on Day 1 and Day 2, respectively. Finally, they were tested for the first and second acquired memories on Day 3. It is demonstrated that the human declarative memory fulfills the two requirements that define the process. First, the reactivated memory is impaired by a new learning only when it is given closely after the reminder, revealing that the memory is labilized. Second, the omission of at least one of the reminder's components prevents labilization. Therefore, results show that the new learning fails to produce an amnesic effect on the target memory either when the reminder omits the learned cue or includes the beginning of the reinforcement.  相似文献   

7.
The role of dopamine receptors in regulating the formation of recognition memory remains poorly understood. Here we show the effects of systemic administration of dopamine receptor agonists and antagonists on the formation of memory for novel object recognition in rats. In Experiment I, rats received an intraperitoneal (i.p.) injection of vehicle, the selective D1 receptor agonist SKF38393 (1.0 and 5.0mg/kg), or the D2 receptor agonist quinpirole (1.0 and 5.0mg/kg) immediately after training. In Experiment II, rats received an injection of vehicle, the dopamine receptor antagonist SCH23390 (0.1 and 0.05 mg/kg), or the D2 receptor antagonist raclopride (0.5 and 0.1mg/kg) before training, followed by an injection of vehicle or the nonselective dopamine receptor agonist apomorphine (0.05 mg/kg) immediately after training. SKF38393 at 5mg/kg produced an enhancement of novel object recognition memory measured at both 24 and 72 h after training, whereas the dose of 10mg/kg impaired 24-h retention. Posttraining administration of quinpirole did not affect 24-h retention. Apomorphine enhanced memory in rats given pretraining raclopride, suggesting that the effect was mediated by selective activation of D1 receptors. The results indicate that activation of D1 receptors can enhance recognition memory consolidation. Importantly, pharmacological activation of D1 receptors enhanced novel object recognition memory even under conditions in which control rats showed significant retention.  相似文献   

8.
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.  相似文献   

9.
In two experiments, we examined the effect of repeated reminder treatments on the speed of memory retrieval by 3‐month‐old human infants. Infants were trained for two consecutive days to kick their feet to produce movement in an overhead mobile. Infants in the one‐reminder condition received a 3 min reminder treatment 13 days after the conclusion of training. Infants in the two‐reminder condition received one 3 min reminder treatment 6 days after the conclusion of training and a second reminder treatment 7 days later (i.e. 13 days following the conclusion of training). Infants in the no‐reminder control condition were not exposed to the reminder prior to the long‐term retention test. In the absence of a reminder treatment, infants exhibited complete forgetting during the long‐term test. Infants exposed to one reminder exhibited retention when tested 24 h after their only reminder, but not when tested earlier. Infants exposed to two reminder treatments, on the other hand, exhibited retention when tested 1, 4 or 24 h after their second reminder treatment. We conclude that the opportunity to retrieve the memory on a prior occasion facilitated subsequent memory retrieval.  相似文献   

10.
In auditory fear conditioning, repeated presentation of the tone in the absence of the shock leads to extinction of the acquired fear response. Both the medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA) are involved in extinction. Here we examined this involvement by antagonizing D1 receptors in both regions, in the rat. We microinfused the D1 receptor antagonist, SCH23390, into the infra-limbic part of the mPFC (IL) or BLA at different time points. SCH23390 mircoinfused into the IL either before extinction acquisition or following short extinction training resulted in impairment of extinction consolidation. Microinfusion of SCH23390 into the BLA, prior to acquisition of extinction caused impairment in acquisition of extinction without affecting extinction consolidation. This is supported by the results showing that microinfusion of SCH23390 into the BLA following a short-training session did not affect consolidation. These results further strengthen the role of mPFC in consolidation of extinction while highlighting the role of the D1 receptors in this process.  相似文献   

11.
Memantine is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist that has been approved for the treatment of the cognitive deficits noted in Alzheimer's disease. While there is a body of research that supports memantine's facilitative action upon memory compromise, this series of studies aimed to investigate the effects of this drug in healthy animals with intact memory functioning. A 0.1 mM dose of memantine injected immediately after a weakly aversive training event (i.e. 20% v/v methyl anthranilate) was found to enhance passive avoidance learning for this event in day-old chicks up to 24 h following training. The same dose of memantine was also observed to enhance memory for the training event when it was administered in conjunction with a reminder trial. These results suggest that memantine is capable of facilitating both memory consolidation as well as memory reconsolidation. It was concluded that memantine's mechanism may involve the short-term or intermediate memory phases of the Gibbs and Ng model of memory, and that the current findings represent enhancement of intact memory, rather than amelioration of memory compromise.  相似文献   

12.
It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20?min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.  相似文献   

13.
In previous experiments on contextual memory, we proposed that the unreinforced re-exposure to the learning context (conditioned stimulus, CS) acts as a switch guiding the memory course toward reconsolidation or extinction, depending on reminder duration. This proposal implies that the system computes the total exposure time to the context, from CS onset to CS offset, and therefore, that the reminder presentation must be terminated for the switching mechanism to become operative. Here we investigated to what extent this requirement is necessary, and we explored the relation between diverse phases in the reconsolidation and extinction processes. We used the contextual memory model of the crab Chasmagnathus which involves an association between the learning context (CS) and a visual danger stimulus (unconditioned stimulus, US). Administration of cycloheximide was used to test the lability state of memory at different time points. The results show that two factors, no-reinforcement during the reminder (i.e., CS re-exposure) and CS offset are the necessary conditions for both processes to occur. Regardless of the reminder duration, memory retrieved by unreinforced CS re-exposure emerges intact and consolidated when tested before CS offset, suggesting that neither reconsolidation nor extinction is concomitant with CS re-exposure. Either process could only be triggered once the definitive mismatch between CS and US is confirmed by CS termination without the expected reinforcement.  相似文献   

14.
Post-training administration of the selective D1 or D2 agonists SKF 38393 and LY 171555 dose dependently impairs retention of an inhibitory avoidance response in DBA/2 mice. In agreement, the selective D1 or D2 antagonists SCH 23390 and (-)-sulpiride improve retention. These effects are opposite to those observed in the C57BL/6 strain, as previously reported. Moreover, B6D2F1 hybrids present a response to SKF 38393, LY 171555, SCH 23390, and (-)-sulpiride that parallels that of the C57BL/6 strain, thus suggesting that the neural mechanisms underlying the effects of DA agonists or antagonists on memory processes may be inherited through a dominant mode of inheritance.  相似文献   

15.
Recent demonstrations of "reconsolidation" suggest that memories can be modified when they are reactivated. Reconsolidation has been observed in human procedural memory and in implicit memory in infants. This study asks whether episodic memory undergoes reconsolidation. College students learned a list of objects on Day 1. On Day 2, they received a reminder or not, and then learned a second list. Memory for List 1 was tested immediately on Day 2 (Experiment 2) or on Day 3 (Experiment 1). Although the reminder did not moderate the number of items recalled from List 1 on either day, subjects who received a reminder incorrectly intermixed items from the second list when recalling List 1 on Day 3. Experiment 2 showed that this effect does not occur immediately and thus is time-dependent. The reminder did not affect memory for List 2 on Day 3 (Experiment 3), demonstrating that modification occurred only for the original memory (List 1). The study demonstrates the crucial role of reminders for the modification of episodic memory, that reconsolidation of episodic memory is time-dependent, and, in contrast to previous reconsolidation findings, that reconsolidation is also a constructive process, one that supports the incorporation of new information in memory.  相似文献   

16.
Following contiguous pairings of light and rotation, light alone elicits a conditioned contraction of Hermissenda's foot, indicative of an associative memory. After a 5-min retention interval, this conditioned response was evident following two or nine (but not one) conditioning trials but persisted for 90 min only after nine trials. In vivo incubation of animals in the protein synthesis inhibitor anisomycin (ANI; 1 microM) did not affect the conditioned response at the 5-min retention interval but significantly attenuated conditioned responding at the 90-min interval even following nine training trials. Deacetylanisomycin (DANI; 1 microM; an inactive form of anisomycin) had no effect on either 5- or 90-min retention. In a companion procedure, groups of isolated nervous systems were exposed to comparable light and rotation pairings, and the B photoreceptors (considered a site of storage for the associative memory) underwent electrophysiological analysis. An increase in neuronal excitability (indexed by depolarizing voltage responses to injected current) in the B photoreceptors paralleled the expression of conditioned responding in intact animals, that is, two training trials produced a short-term increase in excitability that dissipated within 45 min, whereas nine trials produced a persistent (at least 90-min) increase in excitability. In a fmal experiment, isolated nervous systems were exposed to nine training trials, and ANI or DANI was either present in the bathing medium before and during training or was introduced 5 min after training. Following training in ANI, a short-term (5- to 45-min) but not persistent (90-min) increase in excitability in the B photoreceptors was observed. ANI had no effect on either the short-term or persistent increase in excitability if the drug was applied 5 min after the last (ninth) training trial, and DANI had no effect on training-induced increases in excitability at any retention intervals. These results suggest that short-term retention in Hermissenda is protein synthesis independent but that new protein synthesis initiated during or shortly after the training event is necessary for even 90-min retention. Moreover, these results indicate that under some conditions, a critical threshold of training must be exceeded to initiate protein synthesis-dependent retention.  相似文献   

17.
In contextual conditioning, a complex pattern of information is processed to associate the characteristics of a particular place with incentive or aversive reinforcements. This type of learning has been widely studied in mammals, but studies of other taxa are scarce. The context-signal memory (CSM) paradigm of the crab Chasmagnathus has been extensively used as a model of learning and memory. Although initially interpreted as habituation, some characteristics of contextual conditioning have been described. However, no anticipatory response has been detected for animals exposed to the training context. Thus, CSM could be interpreted either as an associative habituation or as contextual conditioning that occurs without a context-evoked anticipatory response. Here, we describe a training protocol developed for contextual Pavlovian conditioning (CPC). For each training trial, the context (conditioned stimulus, CS) was discretely presented and finished together with the unconditioned stimulus (US). In agreement with the CSM paradigm, a robust freezing response was acquired during the 15 training trials, and clear retention was found when tested with the US presentation after short (2 and 4 h) and long (1–4 days) delays. This CPC memory showed forward but not simultaneous presentation conditioning and was context specific and protein synthesis dependent. Additionally, a weak CPC memory was enhanced during consolidation. One day after training, CPC was extinguished by repeated CS presentation, while one presentation induced a memory labilisation–reconsolidation process. Finally, we found an anticipatory conditioned response (CR) during the CS presentation for both short-term (4 h) and long-term memory (24 h). These findings support the conditioning nature of the new paradigm.  相似文献   

18.
Reactivation of stabilized memories returns them to a labile state and causes them to undergo extinction or reconsolidation processes. Although it is well established that administration of glucocorticoids after training enhance consolidation of contextual fear memories, but their effects on post-retrieval processes are not known. In this study, we first asked whether administration of corticosterone after memory reactivation would modulate subsequent expression of memory in rats. Additionally, we examined whether this modulatory action would depend upon the strength of the memory. We also tested the effect of propranolol after memory reactivation. Adult male Wistar rats were trained in a fear conditioning system using moderate (0.4 mA) or high shock (1.5 mA) intensities. For reactivation, rats were returned to the chamber for 90 s 24h later. Immediately after reactivation, rats were injected with corticosterone (1, 3 or 10mg/kg) or vehicle. One, 7 and 14 days after memory reactivation, rats were returned to the context for 5 min, and freezing behavior was scored. The findings indicated that corticosterone when injected after memory reactivation had no significant effect on recall of a moderate memory, but it impaired recall of a strong memory at a dose of 3mg/kg. Propranolol (5mg/kg) given after the reactivation treatment produced a modest impairment that persisted over three test sessions. Further, the results showed that corticosterone, but not propranolol deficit was reversed by a reminder shock. These findings provide evidence that administration of glucocorticoids following memory reactivation reduces subsequent retrieval of strong, but not moderate, contextual conditioned fear memory likely via acceleration of memory extinction. On the other hand, propranolol-induced amnesia may result from blockade of reconsolidation process. Further studies are needed to determine the underlying mechanisms.  相似文献   

19.
Recent evidence indicates that acetylcholine and dopamine play complementary roles in cognitive as well as motor functions. In our previous study, the dopamine receptor blocker, haloperidol, was found to attenuate the radial-arm maze choice accuracy deficit caused by the muscarinic acetylcholine receptor blocker, scopolamine. Haloperidol has activity in blocking both D1 and D2 dopamine receptor subtypes. The current study was conducted to determine whether this dopamine-acetylcholine interaction specifically involved D1 or D2 dopamine receptors. The D1 antagonist, SCH 23390, and the D2 antagonist, raclopride, were administered with a dose of scopolamine which caused choice accuracy deficits in the radial-arm maze. The scopolamine-induced deficit was reversed by SCH 23390, the D1 antagonist, indicating that D1 blockade alone is sufficient to reverse the amnestic effects of muscarinic blockade. There was no indication in this study that the D2 blocker, raclopride, had a similar effect. However, this does not mean that such an effect may not be present at other doses of raclopride or with other D2 antagonists. The present finding that D1 blockade counteracts scopolamine-induced cognitive dysfunction not only furthers the understanding of dopamine-acetylcholine relationships in cognitive function, it also suggests a promising direction for the development of treatments for cognitive dysfunction due to cholinergic loss.  相似文献   

20.
The effects of dopaminergic drugs on morphine state-dependent memory of passive avoidance task were examined in mice. Pre-training administration of morphine (5mg/kg) led to state-dependent learning with impaired memory retrieval on the test day which was reversed by pre-test administration of the same dose of the opiate. The pre-test intracerebroventricular (i.c.v.) administration of the dopamine D1 receptor agonist (SKF38393), dopamine D2 receptor agonist (quinpirole) and dopamine D2 receptor antagonist (sulpiride) not only reversed the effect of pre-training morphine treatment, but also increased this action of the drug. Furthermore, the pre-test i.c.v. administration of dopamine D1 receptor antagonist (SCH23390) prevented the restoration of memory by morphine. In conclusion, the morphine-induced recovery of memory, on the test day, seems to be induced, at least in part, through dopamine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号