首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we wanted to determine why straight-ahead movements performed along one's mid-line are directionally more accurate than movements toward eccentric targets. We also wanted to determine whether the processes underlying this difference were the same in young children as in adults. Six-to-seven-year-old children and adults practiced a video-aiming task using different starting base and target combinations without vision of their ongoing movements. The results indicated that adults and children were directionally more accurate and less variable when pointing toward targets located straight ahead of the starting base rather than eccentric or concentric targets. This was true, regardless of whether the movement was performed along one's midline or not. These results suggest that angled movements are directionally less accurate than straight-ahead movements because of difficulty in defining the orientation of the appropriate movement vector in the workspace and/or in transforming it into appropriate motor commands. A kinematic analysis revealed large coefficients of direction and of extent variability early after movement initiation. However, these coefficients of variability were largely reduced by the occurrence of peak extent velocity, revealing that noise in initial movement planning was quickly reduced by on-line control processes. Finally, the results indicated largely similar planning and control processes for young children and adults.  相似文献   

2.
Recent results indicate that adults modulate their initial movement impulse toward a stationary visual target by processing visual afferent information. The authors investigated whether the mechanisms responsible for those modulations are already in place in young children or develop as the children grow older. Adults (n = 10) and 6-, 8- and 10-year-old children (ns = 6, 7, and 7, respectively) performed a video-aiming task while vision of the cursor they were moving was (acquisition) or was not (transfer) visible. The results indicated that within-participant variability of the initial impulse trajectory of the children's aiming movement leveled-off in acquisition between peak extent deceleration and the end of the initial impulse, whereas it increased linearly as movement unfolded in transfer. The results also indicated that children modulate their initial movement impulse when visual afferent information is available, although to a lesser extent than adults do, and strongly imply that contrary to past suggestions, the initial impulse of an aiming movement is not ballistic.  相似文献   

3.
The focus of the present study was on determining whether the high level of directional accuracy found in aiming studies in which the subjects can see their hand in the visual periphery supports the existence of a kinetic visual channel or, rather, the advantage of binocular over monocular vision for movement directional control. The limits of this kinetic visual channel were also explored. The results of the 1st experiment indicated that seeing one's hand in the visual periphery is sufficient to ensure optimal directional aiming accuracy. Further, no differences in aiming accuracy were noted between monocular and binocular vision. These results supported the existence of a visual kinetic channel. In the 2nd experiment, whether this kinetic visual channel would operate with movements slower (55 degrees /s) than those usually used in studies that had proved its existence (over 110 degrees /s) was delineated. The results indicated that this visual kinetic channel was operative even at relatively slow movement velocities. Central vision of the hand seemed to be used for on-line directional control of relatively slow movements.  相似文献   

4.
A modulation of the primary impulse of manual/video-aiming movements performed without visual feedback has been reported. In the present study, we show that this modulation is modified (a) with increased practice, (b) the use of an aligned visual display, and (c) the availability of visual feedback on alternated trials. However, this modulation was not as efficient as that observed in a normal vision condition, which underlines the primary role of vision to ensure endpoint accuracy. Moreover, this modulation was observed only on the extent component of the task. This last observation indicates that proprioception can be used to modulate the extent component of goal-directed movements but that vision is necessary to modulate their direction.  相似文献   

5.
Goal-directed movements are subject to intrinsic planning and execution variability, which requires that the central nervous system closely monitor our movements to ensure endpoint accuracy. In the present study, we sought to determine how closely the visual system monitored goal-directed aiming movements. We used a cursor-jump paradigm in which a cursor was unexpectedly translated soon after movement initiation. Some of the trials included a second cursor jump, and the cursor remained visible for different durations. The results indicate that seeing the cursor for only 16?ms after the second cursor jump was sufficient to influence the movement endpoint, which suggests that the visual system continuously monitored goal-directed movements. The results also suggest that the perceived position/trajectory of the effector was likely to have been averaged over a period of approximately 70?ms.  相似文献   

6.
The authors investigated whether the salience of dynamic visual information in a video-aiming task mediates the specificity of practice. Thirty participants practiced video-aiming movements in a full-vision, a weak-vision, or a target-only condition before being transferred to the target-only condition without knowledge of results. The full- and weak-vision conditions resulted in less endpoint bias and variability in acquisition than did the target-only condition. Going from acquisition to transfer resulted in a large increase in endpoint variability for the full-vision group but not for the weak-vision or target-only groups. Kinematic analysis revealed that weak dynamic visual cues do not mask the processing of other sources of afferent information; unlike strong visual cues, weak visual cues help individuals calibrate less salient sources of afferent information, such as proprioception.  相似文献   

7.
The authors investigated whether the salience of dynamic visual information in a video-aiming task mediates the specificity of practice. Thirty participants practiced video-aiming movements in a full-vision, a weak-vision, or a target-only condition before being transferred to the target-only condition without knowledge of results. The full- and weak-vision conditions resulted in less endpoint bias and variability in acquisition than did the target-only condition. Going from acquisition to transfer resulted in a large increase in endpoint variability for the full-vision group but not for the weak-vision or target-only groups. Kinematic analysis revealed that weak dynamic visual cues do not mask the processing of other sources of afferent information; unlike strong visual cues, weak visual cues help individuals calibrate less salient sources of afferent information, such as proprioception.  相似文献   

8.
It is well known that dynamic visual information influences movement control, whereas the role played by background visual information is still largely unknown. Evidence coming mainly from eye movement and manual tracking studies indicates that background visual information modifies motion perception and might influence movement control. The goal of the present study was to test this hypothesis. Subjects had to apply pressure on a strain gauge to displace in a single action a cursor shown on a video display and to immobilize it on a target shown on the same display. In some instances, the visual background against which the cursor moved was unexpectedly perturbed in a direction opposite to (Experiment 1), or in the same direction as (Experiment 2) the cursor controlled by the subject. The results of both experiments indicated that the introduction of a visual perturbation significantly affected aiming accuracy. These results suggest that background visual information is used to evaluate the velocity of the aiming cursor, and that this perceived velocity is fed back to the control system, which uses it for on-line corrections.  相似文献   

9.
Three experiments were conducted in which visual information was manipulated either at the endpoint or during preselected, subject defined and constrained, experimenter-defined movements. In Experiments 1 and 2 the subject's task was to reproduce the movement in the absence of vision. Augmenting the terminal location of the criterion movement with vision had no differential effect on reproduction in Experiment 1, although preselected movement accuracy was significantly superior to constrained. Providing vision throughout the criterion movement in Experiment 2 not only failed to improve the accuracy of constrained movements but decreased reproduction performance in preselected movements. In Experiment 3 procedures were adopted to control the allocation of the subjects' attention during the criterion movement. The subjects reproduced by vision alone, movement alone, or with both visual and movement information available. When subjects were informed of the modality of reproduction prior to criterion presentation, they were able to ignore concurrent input from vision and attend to movement information. In the absence of precues visual information was spontaneously attended. The data were interpreted as contrary to closed-loop assumptions that additional information necessarily enhances the strength of a motor memory representation. Rather, they can be accommodated in terms of Posner, Nissen and Klein's (1976) theoretical account of visual dominance and serve to illustrate the importance of selective attention effects in movement coding.  相似文献   

10.
Researchers have suggested that visual feedback not only plays a role in the correction of errors during movement execution but that visual feedback from a completed movement is processed offline to improve programming on upcoming trials. In the present study, we examined the potential contribution of online and offline processing of visual feedback by analysing spatial variability at various kinematic landmarks in the limb trajectory (peak acceleration, peak velocity, peak negative acceleration and movement end). Participants performed a single degree of freedom video aiming task with and without vision of the cursor under four criterion movement times (225, 300, 375 and 450 ms). For movement times of 225 and 300 ms, the full vision condition was less variable than the no vision condition. However, the form of the variability profiles did not differ between visual conditions suggesting that the contribution of visual feedback was due to offline processes. In the 375 and 450 ms conditions, there was evidence for both online and offline control as the form of the variability profiles differed significantly between visual conditions.  相似文献   

11.
In a number of studies, we have demonstrated that the spatial-temporal coupling of eye and hand movements is optimal for the pickup of visual information about the position of the hand and the target late in the hand's trajectory. Several experiments designed to examine temporal coupling have shown that the eyes arrive at the target area concurrently with the hand achieving peak acceleration. Between the time the hand reached peak velocity and the end of the movement, increased variability in the position of the shoulder and the elbow was accompanied by a decreased spatial variability in the hand. Presumably, this reduction in variability was due to the use of retinal and extra-retinal information about the relative positions of the eye, hand and target. However, the hand does not appear to be a slave to the eye. For example, we have been able to decouple eye movements and hand movements using Müller-Lyer configurations as targets. Predictable bias, found in primary and corrective saccadic eye movements, was not found for hand movements, if on-line visual information about the target was available during aiming. That is, the hand remained accurate even when the eye had a tendency to undershoot or overshoot the target position. However, biases of the hand were evident, at least in the initial portion of an aiming movement, when vision of the target was removed and vision of the hand remained. These findings accent the versatility of human motor control and have implications for current models of visual processing and limb control.  相似文献   

12.
The role of visual feedback during movement is attributed to its accuracy, but findings regarding the utilization of this information are inconsistent. We developed a novel dot-placing task to investigate the role of vision in arm movements. Participants conducted pointing-like movements between two target stimuli at even spaces. In Experiment 1, visual feedback of targets and response positions was manipulated. Although visual loss of target stimuli hindered accuracy of movements, the absence of the position of previously placed dots had little effect. In Experiment 2, the effect of movement time on accuracy was assessed, as the relationship between these has been traditionally understood as a speed/accuracy trade-off. Results revealed that duration of movement did not impact movement accuracy.  相似文献   

13.
Seeing one's hand in visual periphery has been shown to optimize the directional accuracy of a sweeping hand movement, which is consistent with Paillard's (1980; Paillard & Amblard, 1985) two-channels model of visual information processing. However, contrary to this model, seeing one's hand in central vision, even for a brief period of time, also resulted in optimal directional accuracy. One goal of the present study was to test two opposing hypotheses proposed to explain the latter finding. As a second goal, we wanted to determine whether additional support could be found for the existence of a visual kinetic channel. The results indicated that seeing one's hand in central vision, even for a very short delay, resulted in the same accuracy as being permitted to see one's hand for the duration of the whole movement. This suggests that seeing one's hand around the target might enable one to code its location and that of the target within a single frame of reference and, thus, facilitate movement planning. In addition, the results of the present study indicated that seeing one's hand in motion while in visual periphery permitted a better directional accuracy than when this information was not available. This suggests that the movement vector, which is planned prior to movement initiation, can be quickly updated following movement initiation.  相似文献   

14.
The question addressed in the present study was whether subjects (N = 24) can use visual information about their hand, in the first half of an aiming movement, to ensure optimal directional accuracy of their aiming movements. Four groups of subjects practiced an aiming task in either a complete vision condition, a no-vision condition, or in a condition in which their hand was visible for the first half [initial vision condition (IV)] or the second half of the movement [final vision condition (FV)]. Following 240 trials of acquisition, all subjects were submitted to a transfer test that consisted of 40 trials performed in a no-vision condition. The results indicated that seeing the hand early in movement did not help subjects to optimize either directional or amplitude accuracy. On the other hand, when subjects viewed their hand closer to the target, movements resulted that were as accurate as those performed under a complete vision condition. In transfer, withdrawing vision did not cause any increase in aiming error for the IV or the no-vision conditions. These results replicated those of Carlton (1981) and extended those of Bard and colleagues (Bard, Hay, & Fleury, 1985) in that they indicated that the kinetic visual channel hypothesized by Paillard (1980; Paillard & Amblard, 1985) appeared to be inoperative beyond 40deg of visual angle.  相似文献   

15.
The authors examined visual dominance between trials in which the movement program was amended (i.e., off-line processing). Weighting between visual and proprioceptive feedback was examined in a trial-by-trial analysis of the directional parameter of feedforward control. Eight participants moved a cursor to a target displayed on a computer screen by manipulating a hand-held stylus on a digitizing tablet. In the first 30 trials, the cursor followed the stylus movement (practice condition). In the next 30 trials, the directional error of the stylus movement was presented in the opposite direction (reversal condition). Subjects knew the presence and the nature of the reversal. In the last 10 trials, the reversal was withdrawn (transfer condition). Directional error of feedforward control was relatively small in the practice condition, and it increased gradually in 1 of 2 directions as trials proceeded in the reversal condition. Positive aftereffect was observed in the transfer condition. A constant increment of the directional error indicated that both visual and proprioceptive feedback are registered, with higher weight on vision, and that weighting between those inputs is determined automatically or is fixed without any strategic control.  相似文献   

16.
The purpose of this study was to determine the extent to which participants could effectively switch from on-line (OL) to pre-planned (PP) control (or vice versa) depending on previous practice conditions and whether concurrent visual feedback was available during transfer testing. The task was to reproduce a 2000 ms spatial–temporal pattern of a sequence of elbow flexions and extensions. Participants were randomly assigned to one of two practice conditions termed OL or PP. In the OL condition the criterion waveform and the cursor were provided during movement production while this information was withheld during movement production for the PP condition. A retention test and two effector transfer tests were administered to half of the participants in each acquisition conditions under OL conditions and the other half under PP conditions. The mirror effector transfer test required the same pattern of muscle activation and limb joint angles as required during acquisition. The non-mirror transfer test required movements to the same visual–spatial locations as experienced during acquisition. The results indicated that when visual information was available during the transfer tests performers could switch from PP to OL. When visual information was withdrawn, they shifted from the OL to the PP-control mode. This finding suggests that performers adopt a mode of control consistent with the feedback conditions provided during testing.  相似文献   

17.
Two experiments examined on-line processing during the execution of reciprocal aiming movements. In Experiment 1, participants used a stylus to make movements between two targets of equal size. Three vision conditions were used: full vision, vision during flight and vision only on contact with the target. Participants had significantly longer movement times and spent more time in contact with the targets when vision was available only on contact with the target. Additionally, the proportion of time to peak velocity revealed that movement trajectories became more symmetric when vision was not available during flight. The data indicate that participants used vision not only to 'home-in' on the current target, but also to prepare subsequent movements. In Experiment 2, liquid crystal goggles provided a single visual sample every 40 ms of a 500 ms duty cycle. Of interest was how participants timed their reciprocal aiming to take advantage of these brief visual samples. Although across participants no particular portion of the movement trajectory was favored, individual performers did time their movements consistently with the onset and offset of vision. Once again, performance and kinematic data indicated that movement segments were not independent of each other.  相似文献   

18.
The authors examined visual dominance between trials in which the movement program was amended (i.e., off-line processing). Weighting between visual and proprioceptive feedback was examined in a trial-by-trial analysis of the directional parameter of feedforward control. Eight participants moved a cursor to a target displayed on a computer screen by manipulating a hand-held stylus on a digitizing tablet. In the first 30 trials, the cursor followed the stylus movement (practice condition). In the next 30 trials, the directional error of the stylus movement was presented in the opposite direction (reversal condition). Subjects knew the presence and the nature of the reversal. In the last 10 trials, the reversal was withdrawn (transfer condition). Directional error of feedforward control was relatively small in the practice condition, and it increased gradually in 1 of 2 directions as trials proceeded in the reversal condition. Positive aftereffect was observed in the transfer condition. A constant increment of the directional error indicated that both visual and proprioceptive feedback are registered, with higher weight on vision, and that weighting between those inputs is determined automatically or is fixed without any strategic control.  相似文献   

19.
The role played by peripheral visual information in the control of aiming movements is not fully understood, as is indicated by the conflicting results reported in the literature. In the present study, the authors tested and confirmed the hypothesis that the source of the conflict lies in the portion of the visual peripheral field that has been under scrutiny in the different studies. Participants (N = 60) moved a computer mouse from a fixed starting position to 1 of 3 targets under varied vision conditions. The portion of the peripheral visual field that best ensured directional accuracy of a sweeping movement was found to be located between 20 degrees and 10 degrees of visual angle, whereas the area found to favor directional accuracy of an aiming movement comprised 30 degrees through 10 degrees of visual angle.  相似文献   

20.
Past research has revealed that central vision is more important than peripheral vision in controlling the amplitude of target-directed aiming movements. However, the extent to which central vision contributes to movement planning versus online control is unclear. Since participants usually fixate the target very early in the limb trajectory, the limb enters the central visual field during the late stages of movement. Hence, there may be insufficient time for central vision to be processed online to correct errors during movement execution. Instead, information from central vision may be processed offline and utilised as a form of knowledge of results, enhancing the programming of subsequent trials. In the present research, variability in limb trajectories was analysed to determine the extent to which peripheral and central vision is used to detect and correct errors during movement execution. Participants performed manual aiming movements of 450 ms under four different visual conditions: full vision, peripheral vision, central vision, no vision. The results revealed that participants utilised visual information from both the central and peripheral visual fields to adjust limb trajectories during movement execution. However, visual information from the central visual field was used more effectively to correct errors online compared to visual information from the peripheral visual field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号