首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments were performed to examine the reverberation cue to egocentric auditory distance and to determine the extent to which such a cue could provide 'absolute', as contrasted with 'relative', information about distance. In experiment 1 independent groups of blindfolded observers (200 altogether) were presented with broadband noise from a speaker at one of five different distances (0.55 to 8 m) in a normal hard-walled room. Half of each group of observers were presented with the sound at 0 deg azimuth, followed (after a delay) by the identical sound at 90 deg azimuth. The order of presentation was reversed for the remaining observers. Perceived distance varied significantly as a function of the physical distance to the speaker, even for the first presentations. The change in the binaural information between the 0 deg and 90 deg presentations did not significantly modify the results. For both orientations, near distances were overestimated and far distances were underestimated. Experiment 2 and 3 were designed to evaluate how much prior auditory exposure to the laboratory environment was necessary. A 200 Hz square-wave signal was presented from one of three distances (1, 2, or 6 m) to observers who had either minimal room information or an exposure which included talking within the room. Perceived distance varied significantly with physical distance regardless to exposure condition.  相似文献   

2.
Previously, we (Bian, Braunstein, and& Andersen, 2005) reported a dominance effect of the ground plane over other environmental surfaces in determining the perceived relative distance of objects in 3-D scenes. In the present study, we conducted three experiments to investigate whether this ground dominance is due to inherent differences between ground and ceiling surfaces, or to the locations of these surfaces in the visual field. In Experiment 1, two vertical posts were positioned between a ground surface and a ceiling surface, and optical contact was manipulated so that the two surfaces provided contradictory information about the relative distances of the posts from the participant. The two surfaces were either both above, both below, or one above and one below fixation. In Experiment 2, only one surface was presented, either above, below, or at fixation. In Experiment 3, the posts were replaced by two red dots, and the eccentricity of the optical contact on the two surfaces was equated in each of five locations in the visual field. In all three experiments, participants judged which of the two objects appeared to be closer. Overall, we found a higher proportion of judgments consistent with a ground surface than with a ceiling surface in all locations, indicating that the ground dominance effect is mainly due to characteristics of the ground surface, with location in the visual field having only a minor effect.  相似文献   

3.
This study extends and tests a theory of binocular distance perception that has been shown to give a good account of performance in relative distance tasks. Here the theory is tested in two experiments in which the observer directly indicates perceived egocentric distance of targets (perceived distance from himself or herself) by means of a verbal report or manual pointing response. In the first, the distance to two targets is varied while maintaining a constant disparity between them. In the second, one target is held fixed while the distance to a second target is varied. In each case, the observer indicates the perceived distance of each target. Manual and verbal responses are found to agree with each other to within a linear transform. Both sets of data are shown to be consistent with the theory and are used to estimate the parameters of the theory. There is no other theory that predicts these results.  相似文献   

4.
Some recent studies on the extraretinal contribution to distance perception are reviewed. These experiments demonstrate that vergence can provide reliable information for judgments on the distance of proximal targets in the absence of all other cues. We argue that, although vergence is an unreliable cue at large fixation distances and is subject to a strong contraction bias when studied in isolation, these facts do not imply a minor role for vergence in near-space perception. When additional depth and distance cues are added, the contribution of vergence information becomes more complicated. We present results which indicate that the different cues to depth and distance are combined in a manner that can result in unexpected distortions of visual space. A simple heuristic model which can produce the observed distortions is outlined.  相似文献   

5.
In the absence of definitive cues’to distance, the perceived distance of an object will be in error in the direction of the object appearing at a distance of about 2 m from O. This tendency to perceive an object at a relatively near distance is termed the specific distance tendency (Gogel. 1969). Also, it has been found that an error in perceiving the distance of an object will result in an apparent movement of the object when the head is moved (Hay & Sawyer. 1969; Wallach, Yablick. & Smith. 1972). From these two results, it was expected that the direction of trie apparent movement of a stationary point of light resulting from head movement would vary predictably as a function of the physical distance of the point of light from O. This expectation was confirmed in an experiment in which both the perceived motion and perceived distance of the point of light were measured. The consequences of the study for the role of motion parallax in the perception of distance and for the reafference principle in the perception of object motion with head motion are discussed  相似文献   

6.
Research on distance perception has focused on environmental sources of information, which have been well documented; in contrast, size perception research has focused on familiarity or has relied on distance information. An analysis of these two parallel bodies of work reveals their lack of equivalence. Furthermore, definitions of familiarity need environmental grounding, specifically concerning the amount of size variation among different tokens of an object. To demonstrate the independence of size and distance perception, subjects in two experiments were asked to estimate the sizes of common objects from memory and then to estimate both the sizes and the distances of a subset of such objects displayed in front of them. The experiments found that token variation was a critical variable in the accuracy of size estimations, whether from memory or with vision, and that distance had no impact at all on size perception. Furthermore, when distance information was good, size had no effect on distance estimation; in contrast, at far distances, the distances to token variable or unknown objects were estimated with less accuracy. The results suggest that size perception has been misconceptualized, so that the relevant research to understand its properties has not been undertaken. The size-distance invariance hypothesis was shown to be inadequate for both areas of research.  相似文献   

7.
When people manipulate a moving object, such as writing with a pen or driving a car, they experience their actions as intimately related to the object’s motion, that is they perceive control. Here, we tested the hypothesis that observers would feel more control over a moving object if an unrelated task drew attention to a location to which the object subsequently moved. Participants steered an object within a narrow path and discriminated the color of a flash that appeared briefly close to the object. Across two experiments, participants provided higher ratings of perceived control when an object moved over a flash’s location than when an object moved away from a flash’s location. This result suggests that we use the location of spatial attention to determine the perception of control. If an object goes where we are attending, we feel like we made it go there.  相似文献   

8.
The tactile surface forms a continuous sheet covering the body. And yet, the perceived distance between two touches varies across stimulation sites. Perceived tactile distance is larger when stimuli cross over the wrist, compared to when both fall on either the hand or the forearm. This effect could reflect a categorical distortion of tactile space across body-part boundaries (in which stimuli crossing the wrist boundary are perceptually elongated) or may simply reflect a localised increased in acuity surrounding anatomical landmarks (in which stimuli near the wrist are perceptually elongated). We tested these two interpretations across two experiments, by comparing a well-documented bias to perceive mediolateral tactile distances across the forearm/hand as larger than proximodistal ones along the forearm/hand at three different sites (hand, wrist, and forearm). According to the ‘categorical’ interpretation, tactile distances should be elongated selectively in the proximodistal axis thus reducing the anisotropy. According to the ‘localised acuity’ interpretation, distances will be perceptually elongated in the vicinity of the wrist regardless of orientation, leading to increased overall size without affecting anisotropy. Consistent with the categorical account, we found a reduction in the magnitude of anisotropy at the wrist, with no evidence of a corresponding localised increase in precision. These findings demonstrate that we reference touch to a representation of the body that is categorically segmented into discrete parts, which consequently influences the perception of tactile distance.  相似文献   

9.
Tozawa J 《Perception》2008,37(1):3-21
The distance-calibration hypothesis states that retinal velocity is scaled by using distance cues, and judged velocity remains unchanged when distance is changed. The relational hypothesis states that judged velocity depends on retinal velocities, and is proportional to judged distance. These hypotheses were compared in three experiments where the movements of the standard stimulus and the comparison stimulus were manipulated by the ratio of the angular velocity of the comparison stimulus to the angular velocity of the standard stimulus. The presentation conditions of the standard stimulus and the comparison stimulus, and the colour cues of the two stimuli were also manipulated in order to change the strength of the cues available to the observers. The results indicate that judged velocities and the relationship of judged distance and velocity depend on the strength of the cues. When cues are strong, the distance-calibration hypothesis adequately explains speed constancy. When cues are weak, judged velocity and the relationship between judged distance and velocity are consistent with the prediction of the relational hypothesis. The perceived speed of a stimulus depends not only on the physical speed of the stimulus but also on non-motion cues, some of which are distance cues involved in depth perception.  相似文献   

10.
Research on distance perception has focused on environmental sources of information, which have been well documented; in contrast, size perception research has focused on familiarity or has relied on distance information. An analysis of these two parallel bodies of work reveals their lack of equivalence. Furthermore, definitions of familiarity need environmental grounding, specifically concerning the amount of size variation among different tokens of an object. To demonstrate the independence of size and distance perception, subjects in two experiments were asked to estimate the sizes of common objects from memory and then to estimate both the sizes and the distances of a subset of such objects displayed in front of them. The experiments found that token variation was a critical variable in the accuracy of size estimations, whether from memory or with vision, and that distance had no impact at all on size perception. Furthermore, when distance information was good, size had no effect on distance estimation; in contrast, at far distances, the distances to token variable or unknown objects were estimated with less accuracy. The results suggest that size perception has been misconceptualized, so that the relevant research to understand its properties has not been undertaken. The size-distance invariance hypothesis was shown to be inadequate for both areas of research.  相似文献   

11.
Davis C  Kim J 《Cognition》2006,100(3):B21-B31
The study examined whether people can extract speech related information from the talker's upper face that was presented using either normally textured videos (Experiments 1 and 3) or videos showing only the outlined of the head (Experiments 2 and 4). Experiments 1 and 2 used within- and cross-modal matching tasks. In the within-modal task, observers were presented two pairs of short silent video clips that showed the top part of a talker's head. In the cross-modal task, pairs of audio and silent video clips were presented. The task was to determine the pair in which the talker said the same sentence. Performance on both tasks was better than chance for the outline as well as textured presentation suggesting that judgments were primarily based on head movements. Experiments 3 and 4 tested if observing the talker's upper face would help identify speech in noise. The results showed the viewing the talker's moving upper head produced a small but reliable improvement in speech intelligibility, however, this effect was only secure for the expressive sentences that involved greater head movements. The results suggest that people are sensitive to speech related head movements that extend beyond the mouth area and can use these to assist in language processing.  相似文献   

12.
It is possible, in theory, for the simultaneous occurrence of several different relative cues of distances to increase the veridicality of the perception of absolute distance. To test whether this actually occurs, a three-dimensional display was viewed monocularly while moving the head laterally, under conditions in which some error in perceived absolute distance was expected. The perceived absolute distance of the display was measured with the number of relative cues of distance within the display varied. No systematic reduction was found in the error in perceived absolute distance as a consequence of the variation in the number of relative cues. The study provides no evidence that the potential source of absolute distance information provided by relative cues is utilized by the visual system.  相似文献   

13.
Hay and Sawyer recently demonstrated that the constancy of visual direction (CVD) also operates for near targets. A luminous spot in the dark, 40 cm from the eyes, was perceived as stationary when S nodded his head. This implies that CVD takes target distance, as well as head rotation, into account as a stationary environment is perceived during head movements. Distance is a variable in CVD because, during a turning or nodding of the head, the eyes become displaced relative to the main target direction, the line between the target and the rotation axis of the head. This displacement of the eyes during head rotation causes an additional change in the target direction, i.e., a total angular change greater than the angle of the head rotation. The extent of this additional angular displacement is greater the nearer the target. We demonstrated that the natural combination of accommodation and convergence can supply the information needed by the nervous system to compensate for this additional target displacement. We also found that wearing glasses that alter the relation between these oculomotor adjustments and target distance produces an adaptation in CVD. An adaptation period of 1.5 h produced a large adaptation effect. This effect was not entirely accounted for by an adaptation in distance perception. Measurements of the alteration between oculomotor cues and registered distance with two kinds of tests for distance perception yielded effects significantly smaller than the effect measured with the CVD test. We concluded that the wearing of the glasses had also produced an adaptation within CVD.  相似文献   

14.
15.
Haptic perception of parallelity in the midsagittal plane.   总被引:10,自引:0,他引:10  
Previous studies [Perception 28 (1999) 1001; Perception 28 (1999) 781] on the haptic perception of parallelity on a horizontal plane showed that what subjects haptically perceive as being parallel deviates considerably from what is physically parallel. The deviations could be described with a subject-dependent orientation gradient in the left-right direction. The gradients found in the bimanual conditions were significantly larger (about 70%) than those in the unimanual conditions. The questions to be answered in the present study are the following: (1) Does the haptic perception of parallelity in the midsagittal plane also show systematic deviations from veridicality? (2) Are the unimanual and bimanual performances again quantitatively but not qualitatively different? The set-up consisted of a plate positioned in the midsagittal plane of the subject. The subject touched the right side of the plate with his/her right hand and the left side with the left hand. The results show again large systematic deviations. The major part of the deviations can be described by means of a subject-dependent orientation gradient in the vertical direction. The quantitative (but not qualitative) difference between the unimanual and the bimanual conditions is much larger in the midsagittal plane than in the horizontal plane.  相似文献   

16.
An experiment was conducted to evaluate the ability of 28 younger and older adults to visually bisect distances in depth both indoors and outdoors; half of the observers were male and half were female. Observers viewed 15-m and 30-m distance extents in four different environmental settings (two outdoor grassy fields and an indoor hallway and atrium) and were required to adjust the position of a marker to place it at the midpoint of each stimulus distance interval. Overall, the observers’ judgments were more accurate indoors than outdoors. In outdoor environments, many individual observers exhibited perceptual compression of farther distances (e.g., these observers placed the marker closer than the actual physical midpoints of the stimulus distance intervals). There were significant modulatory effects of both age and sex upon the accuracy and precision of the observers’ judgments. The judgments of the male observers were more accurate than those of the female observers and they were less influenced by environmental context. In addition, the accuracies of the younger observers’ judgments were less influenced by context than those of the older observers. With regard to the precision of the observers’ judgments, the older females exhibited much more variability across repeated judgments than the other groups of observers (younger males, younger females, and older males). The results of our study demonstrate that age and sex are important variables that significantly affect the visual perception of distance.  相似文献   

17.
The ability to detect the distance walked when blindfolded using only haptic information generated by the walking activity was investigated. Participants walked a straight path until told to stop, turned, and attempted to return to their starting point. The path was completely featureless. Counting was prevented. Blindfolded, sighted participants traveled with a long cane or a trained sighted guide. Gait was varied or distorted. In all experiments the return distance was a linear function of the set distance, with some participants giving and some conditions resulting in remarkably sensitive performances. The magnitude of errors was a linear function of step length.  相似文献   

18.
19.
We conducted an experiment to evaluate the ability of 32 younger and older adults to visually perceive distances in an outdoor setting. On any given trial, the observers viewed 2 environmental distances and were required to estimate the distance ratio—the length of the (usually) larger distance relative to that of the shorter. The stimulus distance ratios ranged from 1.0 (the stimulus distances were identical) to 8.0 (1 distance interval was 8.0 times longer than the other). The stimulus distances were presented within a 26 m × 60 m portion of a grassy field. The observers were able to reliably estimate the stimulus distance ratios: The overall Pearson r correlation coefficient relating the judged and actual distance ratios was 0.762. Fifty-eight percent of the variance in the observers’ perceived distance ratios could thus be accounted for by variations in the actual stimulus ratios. About half of the observers significantly underestimated the distance ratios, while the judgments of the remainder were essentially accurate. Significant modulatory effects of sex and age occurred, such that the male observers’ judgments were the most precise, while those of the older males were the most accurate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号