首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the contribution of otolithic and somesthetic inputs in the perception of body orientation when pitching at very slow velocities. In Experiment 1, the subjects' task was to indicate their subjective postural vertical, in two different conditions of body restriction, starting from different angles of body tilt. In the "strapped" condition, subjects were attached onto a platform by means of large straps. In the "body cast" condition, subjects were completely immobilized in a depressurized system, which attenuates gravity-based somesthetic cues. Results showed that the condition of body restriction and the initial tilt largely influenced the subjective postural vertical. In Experiment 2, subjects were displaced from a vertical position and had to detect the direction of body tilts. Results showed that the threshold for the perception of body tilt was higher when subjects were immobilized in the body cast and when they were tilted backward. Experiment 3 replicated the same protocol from a supine starting position. Compared to results of Experiment 2, the threshold for the perception of body tilt decreased significantly. Overall, these data suggested that gravity-based somesthetic cues are more informative than otolithic cues for the perception of a quasi-static body orientation.  相似文献   

2.
This study was designed to explore the role of somatosensory information from the trunk in the perception of the visual vertical. Twelve normal subjects and 1 subject with no somatosensory function below the neck attempted to set a line to the true vertical in the sitting and lying positions, first with a static visual background and then with rotation of the background about the line of sight. The absence of somatosensory information did not affect accuracy when the subjects were in the upright position. When lying horizontally, all control subjects experienced a substantial perceived tilt of the vertical in the direction of body tilt (the A effect), but, in contrast, the subject lacking somatosensory function exhibited a small but consistent apparent tilt of the vertical in the opposite direction (the E effect). This finding is discussed in relation to two competing hypotheses regarding the mechanisms subserving apparent displacement of the subjective vertical in tilted subjects.  相似文献   

3.
The subjective visual horizontal (SVH) and the subjective head transversal plane (STP) were measured by means of an adjustable luminous line in darkness during centrifuging. Subjects (N = 10) were seated upright, facing forward in a swing-out gondola. After acceleration of the centrifuge to 2G (vectorial sum of the earth's gravity and the centrifugal force; gondola inclination 60 degrees), subjects had to set the line either so that it was perceived as gravitoinertially horizontal (SVH) or so that it was perceived as parallel with the transversal ("horizontal") plane of the head (STP). Initially after acceleration, the SVH was tilted with respect to the gravitoinertial horizontal of the gondola (M = 16.6 degrees). This tilt was compensatory with respect to the gondola inclination. However, the STP was tilted in the opposite direction (M = 12.4 degrees), which might suggest a vestibular-induced distortion of the mental representation of one's own body. Similar results were obtained when measuring the subjective visual vertical (SVV) and the subjective midsagittal plane (SSP) in 5 subjects. The perceived roll angle (obtained as SVH-STP or SVV-SSP) was considerably larger than had previously been reported. Time constants for exponential decay of the tilt of the SVH or SVV were often 2-3 min, indicating a memory for semicircular canal information on changes in head orientation--a position-storage mechanism.  相似文献   

4.
The existence of body orientation mental imagery was tested by examining whether self roll tilt imagery affects the subjective visual vertical (SVV). Twenty healthy subjects judged the orientation of a dim luminous bar with respect to gravitational vertical, while normally seated in complete darkness with their head firmly restrained earth vertically. SVV was measured in three conditions: a reference condition with no imagery, and a left and a right imagery condition, during which the bar orientation was to be judged while the subjects imagine themselves roll-tilted towards left or right, respectively. The imagined roll tilts were of the same magnitude as roll tilts which generally induce an E- effect, i.e., an SVV lean toward the side opposite to those of body tilt. If imagery and perception of self roll tilt share common processes, self roll tilt imagery should induce an E-like effect. Results show an imagery- induced E-like effect, which strongly supports the idea that humans can perform mental imagery of body orientation about gravity. Received: 4 April 2000 / Accepted: 1 September 2000  相似文献   

5.
Observers who lie supine with their heads inverted report large (up to 60°) tilt of a light line in an otherwise dark room when their heads and/or bodies are tilted. Most observers report that visual subjective vertical is tilted in the direction opposite to the head/body tilt. The results can be interpreted by employing a model developed by Mittelstaedt (1983), which suggests that visual subjective vertical is derived from a gravity vector transduced by vestibular and somesthetic receptors combined with “idiotropic vectors” that represent the orientation of the observer’s own head and body axes.  相似文献   

6.
Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s− 1) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt.  相似文献   

7.
Groen EL  Howard IP  Cheung BS 《Perception》1999,28(3):287-297
Illusory self-tilt and illusory self-motion (vection) produced by rotation of a 360 degrees visual scene about the subject's roll axis was measured as a function of the presence or absence of actual rotation of the subject during acceleration of the visual scene. Rotation of the subject to a tilt of 15 degrees was at two levels of acceleration (onset) and with or without a delay between initial rotation and subsequent return (washout) to the vertical position. In one set of conditions, visual motion and subject motion were in opposite directions (concordant) and in another set they were in the same direction (discordant). In two control conditions, the subject was rotated while the visual scene remained stationary. For concordant motion the main effect of body rotation was to reduce the time taken by the subject to indicate self-tilt as compared with the response time to visual motion alone. The magnitude of estimated self-tilt was increased by actual body tilt as could be expected from addition of the perceived actual body tilt and the illusory body tilt induced by visual rotation. This effect of augmented body tilt did not persist after the body was returned to the vertical. The magnitude of vection was not markedly influenced by body rotation and washout. For discordant motion of body and the visual scene, subjects were confused and their responses were very variable, suggesting a nonlinear visual--vestibular interaction.  相似文献   

8.
Lobmaier JS  Mast FW 《Perception》2007,36(4):537-546
Faces are difficult to recognise when presented upside down. This effect of face inversion was effectively demonstrated with the 'Thatcher illusion' by Thompson (1980 Perception 9 483-484). It has been tacitly assumed that this effect is due to inversion relative to retinal coordinates. Here we tested whether it is due to egocentric (i.e. retinal) inversion or whether the orientation of the body with respect to gravity also influences the face-inversion effect. A 3-D human turntable was used to test subjects in 5 different body-tilt (roll) orientations: 0 degree, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The stimuli consisted of 4 'normal' and 4 'thatcherised' faces and were presented in 8 different orientations in the picture plane. The subjects had to decide in a yes-no task whether the faces were 'normal' or 'thatcherised'. Analysis of the d' values revealed a significant effect of stimulus orientation and body tilt. The significant effect of body tilt was due to a drop in d' values in the 135 degrees orientation. This result is compared to findings of studies on the subjective visual vertical, where larger errors occurred in body-tilt orientations between 90 degrees and 180 degrees. The present findings suggest that the face-inversion effect relies mainly on retinal coordinates, but that in head-down body-tilt orientations around 135 degrees the gravitational reference frame has a major influence on the perception of faces.  相似文献   

9.
Groen EL  Jenkin HL  Howard IP 《Perception》2002,31(12):1477-1490
A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.  相似文献   

10.
Perception of the subjective visual vertical (SVV) is usually assessed by asking to subjects, in complete darkness, to adjust the position of a luminous rod that is variably tilted (i.e., by the method of adjustment [ADJ]). Conversely, the two-alternative forced choice (2AFC) method requires subjects to categorize, as tilted either clockwise (CW) or counterclockwise (CCW), stimuli that are presented on a computer screen and are variably tilted from vertical. In this study, we aimed to compare the results of these two methods and investigate age-related effects on the SVV. SVV was assessed in 102 healthy individuals, 50 women and 52 men, with a mean age of 45.7 (range 20–91), using both ADJ (ten trials, initial 1°, 2°, 4°, 8°, or 12° bar tilts both CW and CCW) and 2AFC (120 stimuli with a 1°–32° variable tilt). Also, 50 of the subjects performed the ADJ test twice, with different bar lengths. We estimated bias and threshold for the two methods, and found that neither measure differed across the methods. Age was a significant predictor of threshold (2AFC, R 2 = .141; ADJ, R 2 = .190; p < .001), implying lower sensitivity with increasing age. Moreover, the ADJ method showed a significant increase of bias when the initial tilt was farthest from vertical, whereas the rod length was irrelevant. SVV measures obtained with the ADJ and 2AFC methods were comparable, but the latter measures were more resistant to artifacts that might affect the measurement. The lower sensitivity found in older persons may have an influence on their ability to interact with the environment and may contribute to impairment of postural control.  相似文献   

11.
We investigated optic and somesthetic contributions to perceived body orientation in the pitch dimension. In a within-subject factorial design, each of 12 subjects attempted to set his/her body erect or 45° back from erect while restrained in a movable bed surrounded by an adjustable box The box provided a visual environment consisting of either a grid pattern, two luminous lines, or complete darkness. Both the grid pattern and the luminous lines were effective at-biasing settings of body position when the box was pitched; the pitched grid was more effective than the pitched lines. Although the pitch of the box influenced orientation to both goals, the effect was greater for the diagonal goal than for the erect goal. We present a model of postural orientation in the median plane that involves vestibular, somatosensory, and visual inputs.  相似文献   

12.
This study investigated the influence of pitch body tilt on judging the possibility of passing under high obstacles in the presence of an illusory horizontal self-motion. Seated subjects tilted at various body orientations were asked to estimate the possibility of passing under a projected bar (i.e., a parking barrier), while imagining a forward whole-body displacement normal to gravity. This task was performed under two visual conditions, providing either no visual surroundings or a translational horizontal optic flow that stopped just before the barrier appeared. The results showed a main overestimation of the possibility of passing under the bar in both cases and most importantly revealed a strong influence of body orientation despite the visual specification of horizontal self-motion by optic flow (i.e., both visual conditions yielded a comparable body tilt effect). Specifically, the subjective passability was proportionally deviated towards the body tilt by 46% of its magnitude when facing a horizontal optic flow and 43% without visual surroundings. This suggests that the egocentric attraction exerted by body tilt when referring the subjective passability to horizontal self-motion still persists even when anchoring horizontally related visual cues are displayed. These findings are discussed in terms of interaction between spatial references. The link between the reliability of available sensory inputs and the weight attributed to each reference is also addressed.  相似文献   

13.
The rod-and-frame illusion shows large errors in the judgment of visual vertical in the dark if the frame is large and there are no other visible cues (Witkin and Asch, 1948 Journal of Experimental Psychology 38 762-782). Three experiments were performed to investigate other characteristics of the frame critical for generating these large errors. In the first experiment, the illusion produced by an 11 degrees tilted frame made by luminance borders (standard condition) was considerably larger than that produced by a subjective-contour frame. In the second experiment, with a 33 degrees frame tilt, the illusion was in the direction of frame tilt with a luminance-border frame but in the opposite direction in the subjective-contour condition. In the third experiment, to contrast the role of local and global orientation, the sides of the frame were made of short separate luminous segments. The segments could be oriented in the same direction as the frame sides, in the opposite direction, or could be vertical. The orientation of the global frame dominated the illusion while local orientation produced much smaller effects. Overall, to generate a large rod-and-frame illusion in the dark, the tilted frame must have luminance, not subjective, contours. Luminance borders do not need to be continuous: a frame made of sparse segments is also effective. The mechanism responsible for the large orientation illusion is driven by integrators of orientation across large areas, not by figural operators extracting shape orientation in the absence of oriented contours.  相似文献   

14.
24 male subjects were divided into 3 groups, on the basis of their susceptibility to motion sickness. All subjects were then required to set a luminous line in an apparently vertical position while viewing the line from a body position which was deviated 70 degrees laterally from the upright. No visible frame of reference was available. A significant relationship between motion sickness susceptibility and errors in judging the vertical was discovered, the "intermediate" susceptibility group making the greatest errors. The role of the vestibular system in visual orientation and motion sickness is discussed. The result also indicates the potential value of using perceptual performance as a tool in the study of motion sickness and its correlates.  相似文献   

15.
The rod-and-frame illusion was used to examine a proposed distinction between the mechanism responsible for frame effects on rod-adjustment errors with large displays and the mechanism responsible for errors with small displays. It was suggested that visual-vestibular mechanisms are involved only when the rod is surrounded by a large tilted frame. Errors in the perceived vertical with small frame would instead be due to purely visual mechanisms. To examine this dual process model, we compared errors at small and large frame when the body was vertical or horizontal. There is evidence to suggest that tilting the body affects visual-vestibular interactions, but there is no reason to expect that body tilt would affect intravisual interactions. Hence, we hypothesized that body tilt would increase errors for large frame, but not for small frame. Eight subjects were tested in four different conditions, corresponding to the combination of two body orientations (vertical versus horizontal) and two frame sizes (47.5 versus 10.5 deg of visual angle). Fourier analysis of data was performed. Repeated measures ANOVA tested the hypothesis about frame size and body orientation. The hypothesis was not confirmed. More specifically, we found that tilting the body increased errors for the small frame as well as for the large frame. The interaction between frame size and body orientation was not significant. Results are discussed in relation to the proposed dual-process model.  相似文献   

16.
The role of the otoliths in the perception of verticality is analyzed in two different gravitational environments, 1 g and 1.5 g , and in different roll body positions between upright and upside down. The subjective visual vertical (SVV) is determined when a subject judges the orientation of an indicator as apparently vertical. An increase of g level hardly affects the SVV in the subject's frontal plane (y-z plane). However, for the first time, a three-dimensionally adjustable indicator was used for the SVV and this revealed a new phenomenon: An increase of g level induces a backward slant of the SVV into subject's median plane (x-z plane). The data are discussed with regard to Mittelstaedt's SVV theory; particular emphasis is given to the otolith-head coordinate transformation and the normalization of afferent otolith components. The results of this study provide evidence that the former is implemented at an earlier level and thus precedes the latter.  相似文献   

17.
Previous research has suggested that the visual tilt aftereffect operates according to a gravitational frame of reference. Three experiments were conducted to test this conclusion further. In each experiment, observers (with head upright) adjusted an illuminated bar to apparent vertical following various adaptation conditions. In Experiment 1, observers were given clear visual cues for objective vertical while adjusting the bar. In Experiment 2, they were not given visual cues for vertical. The adaptation conditions in Experiments 1 and 2 consisted of various combinations of head and stimulus tilt. Experiment 3 investigated the effects of head tilt alone. The results indicated that the tilt aftereffect follows a retinal frame of reference under some conditions (Experiment 1) and appears to follow a gravitational frame under others (Experiment 2). These results can be predicted by a simple model involving two factors, a purely visual aftereffect that follows a retinal frame and an extravisual aftereffect that appears to follow a gravitational frame.  相似文献   

18.
Cian C  Raphel C  Barraud PA 《Perception》2001,30(12):1427-1438
We compared the contribution and the effectiveness of modulating the orientation perception of two types of visual information: the visual frame and the visual polarity of objects. In experiment 1, we examined the effect of a square frame, a mouse, an elephant, and a map of France on the apparent vertical. In the upright position, despite the presence of tilted individual component features, the visual objects had no illusory visual tilt effects. When tilted, these objects had a substantial effect on the direction that appeared to be vertical. However, rod-setting errors were smaller in the inducing objects than when observed with the frame display. In the second experiment, the results of experiment 1 were replicated with a meaningful circular contour--a porthole and a clock. The presence of the external circular contour did not abolish the illusion on the apparent vertical. Moreover, in experiment 3, a clock whose numbers were displaced and not tilted--to avoid the possible tilt influence of visual cues--was also able to deflect the subjective visual vertical. This finding suggests that through top-down processing shapes can act as a framework which serves as a reference influencing the perceived orientation of the inner objects.  相似文献   

19.
The tendency for observers to overestimate slant is not simply a visual illusion but can also occur with another sense, such as proprioception, as in the case of overestimation of self-body tilt. In the present study, distortion in the perception of body tilt was examined as a function of gender and multisensory spatial information. We used a full-body-tilt apparatus to test when participants experienced being tilted by 45 degrees, with visual and auditory cues present or absent. Body tilt was overestimated in all conditions, with the largest bias occurring when there were no visual or auditory cues. Both visual and auditory information independently improved performance. We also found a gender difference, with women exhibiting more bias in the absence of auditory information and more improvement when auditory information was added. The findings support the view that perception of body tilt is multisensory and that women more strongly utilize auditory information in such multisensory spatial judgments.  相似文献   

20.
Judgements of the apparent vertieality of a single visible line of light were compared under normal support conditions and under water. During head, body and trunk tilts up to 40° the visual vertical was not influenced by water immersion. Greater degrees of lateral body tilt (up to 180°) resulted in slightly greater departures of the visual from the gravitational vertical during immersion relative to terrestrial performance. It was suggested that this was due to the reduction of information from surface pressure receptors in the trunk. The mean visual aftereffects following head, body and trunk tilts were not affected by water immersion in any consistent manner. It was concluded that visual orientation constancy is only marginally reduced by immersion in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号