首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Normative and reliability data for the children's depression inventory   总被引:14,自引:0,他引:14  
The present study was undertaken to examine some of the psychometric properties of the Children's Depression Inventory (CDI), a self-report inventory devised by Kovacs and Beck (1977) to measure depression in children and adolescents. Normative and reliability data were obtained from three independent samples taken from eight public schools in central Pennsylvania. Age- and gender-related differences in reported characteristics of depression were also investigated. The subjects were 594 males and 658 females whose ages ranged from 8 to 16 years and whose combined mean age was 11.67 years (SD=1.91). The CDI was group-administered to all 1,252 subjects; 155 fifth-grade subjects (77 males and 78 females) were retested after 3 weeks, and 107 seventh- and eight-grade subjects (45 males and 62 females) were retested after 1 year. The distribution statistics for the combined samples yielded an overall CDI mean of 9.09, a standard deviation of 7.04, and a cutoff score of 19 for the upper 10% of the distribution. Reliability assessed through coefficient alpha, item-total score product-moment correlations, and test-retest coefficients proved acceptable. Gender differences were obtained for several item-total score correlations and for test-retest reliability of CDI scores.  相似文献   

2.
Tapping rate and variability were measured as 73 normal, right-handed children in Grades 1–4 engaged in speeded unimanual finger tapping with and without concurrent recitation. Speaking reduced the rate of tapping and increased its variability to a greater extent in younger children than in older children. Developmental changes in variability but not rate were attributable to a greater number of lengthy (>500 ms) pauses in the tapping of younger children. Speaking slowed the right hand more than the left, and the degree of this asymmetry was constant across grade levels. The right-hand effect for tapping rate was not attributable to lengthy pauses. In contrast, asymmetric increases in tapping variability occurred only among children in Grade 1 and only when lengthy pauses were included in the data. The results implicate three mechanisms of intertask interference: one involving capacity limitations, a second involving cross-talk between motor control mechanisms for speech and finger movement, respectively, and a third factor involving occasional diversion of attention from tapping to speaking. These mechanisms are discussed in relation to developmental changes in mental capacity.  相似文献   

3.
Normative data on the motor steadiness battery for children   总被引:3,自引:0,他引:3  
  相似文献   

4.
Finger tapping involves 3 important features: time, spatial amplitude, and frequency. In classical analysis, investigators examine timing parameters; in spectral analysis, they examine frequency parameters. Both types of analysis are based on stationary tap information. The authors propose that time-frequency analysis is a useful tool for analyzing nonstationary finger tapping. They describe the method and give examples of frequency modulation, age difference, and speed transition that demonstrate additional insights one can gain by using this analysis.  相似文献   

5.
Children with Developmental Coordination Disorder (DCD) are more variable in timing their fingers to an external cue. In this study, we investigated the intrinsic coordination properties of self-selected anti-phase finger tapping with and without vision and audition in children with and without DCD and compared their performance to that of adults. Ten children with DCD (Mean age = 7.12 ± 0.3 years), 10 age- and sex-matched typically developing (TD) children, and 10 adults participated in this study. Participants tapped their fingers in anti-phase at a self-selected speed under four different sensory conditions: (1) with vision and audition, (2) with vision but no audition, (3) with audition but no vision, and (4) without vision and audition. We assessed intertap interval (ITI), variability of ITI, mean relative phasing (RP) between the fingers and the variability in RP. Children with DCD adopted a similar mean frequency, but were less accurate and more variable than the other groups. The different sensory conditions did not affect performance in any of the groups. We conclude that visual and auditory feedback of tapping are not salient information sources for bilateral self-selected tapping and that children with DCD are intrinsically less accurate and more variable in their tapping frequency and coordination.  相似文献   

6.
The ability to modulate bilateral finger tapping in time to different frequencies of an auditory beat was studied. Twenty children, 7 years of age, 10 with and 10 without developmental coordination disorder (DCD), and 10 adults tapped their left index and right middle fingers in an alternating pattern in time with an auditory signal for 15s (four trials each, randomly, at 0.8, 1.6, 2.4, 3.2 Hz per finger). Dominant and non-dominant finger data were collapsed since no differences emerged. All three groups were able to modulate their finger frequency across trials to closely approximate the signal frequency but children with DCD were unable to slow down to the lowest frequency. Children with DCD were more variable in tap accuracy (SD of relative phase) and between finger coordination than typically developing children who were respectively more variable than the adults. Children with DCD were unable to consistently synchronize their finger with the beat. Adults were tightly synchronized and often ahead of the beat while children without DCD tended to be behind the beat. Overall, these results indicated that children with DCD can only broadly match their finger movements to an auditory signal with variability and poor synchronicity as key features of their auditory-fine-motor control. Individual inspection of the data revealed that five children with DCD had difficulty matching the slowest frequencies and that these children also had higher variability and lower percentile MABC scores from the movement assessment battery for children (MABC) than other children with DCD. Three children with DCD were more variable only at higher frequencies and two performed like typically developing children.  相似文献   

7.
The temporal characteristics of repetitive finger tapping by the left and right hands were examined in two experiments. In the first experiment, interresponse intervals (IRIs) were recorded while right-handed male subjects tapped in synchrony with an auditory timing pulse (the synchronization phase) and then attempted to maintain the same tapping rate without the timing pulses (the continuation phase). The left and right hands performed separately, at four different rates (interpulse intervals of 250, 500, 750, and 1500 ms). There was no asymmetry of the asynchronies of the timing pulses and the associated responses in the synchronization phase or of the IRIs in either phase, but there was an asymmetry of chronization phase or of the IRIs in either phase, but there was an asymmetry in the temporal dispersion of the responses in both phases. in the second experiment, right-handed males tapped separately with each hand at three different speeds: as quickly as possible, at a fast but steady rate, and at a slow rhythmical rate. The speed asymmetry present when tapping as quickly as possible (with the preferred hand tapping more quickly ) was reduced when tapping at the fast steady rate and was absent when tapping at the slow rhythmical rate. The temporal dispersion of the IRIs produced by the nonpreferred hand was greater than the temporal dispersion of those produced by the preferred hand in all speed conditions. These results show smaller temporal dispersion of tapping by the preferred hand in right-handed males under different conditions, including submaximal speeds at which both hands respond at the same rate. This suggests that the motor system controlling the preferred hand in right-handers had more precise timing of response output than that controlling the nonpreferred hand.  相似文献   

8.
Forty right-handed college subjects tapped with and without a verbal task under two instructional conditions (tap as quickly as possible vs. tap as consistently as possible) and two levels of verbal production (silent vs. aloud). The tapping task consisted of the alternate tapping of two keys with the index finger of the left vs. right hands, while the verbal task was anagram solution. Three rate and four variability measures of tapping performance were evaluated in the identification of lateralized interference. The results indicate that reliable lateralized interference, more right-hand than left-hand tapping disruption, was observed only for variability measures under instructions to tap as consistently as possible. Furthermore, only one of these variability measures was sensitive to an increase in lateralized interference produced by verbal production. Because of the limited demonstration of verbal laterality effects with the two-key tapping procedure in this study, conclusions suggest that the simpler manual task of repetitive tapping of one key should be viewed as the method of choice in future dual-task studies.  相似文献   

9.
The current study investigated factors that affect the stability of anti-phase bimanual finger tapping. Past research employing the order parameter and control parameter concepts, has identified frequency of movement as a control parameter that affects the stability of finger movement patterns (the order parameter). The present study investigated the hypothesis that multiple movement related variables can interact to influence the stability of an order parameter. Specifically, the combined effect of the rate of movement and movement force on the stability of bimanual finger tapping was examined. Participants were required to initiate an anti-phase tapping pattern under three different movement rate conditions (600, 400, and 200 ms), and were required to increase the force of one finger at the onset of a randomly presented stimulus. The results indicate that an increase in the force parameter at lower tapping rates (600 ms) did not affect the phase relation of the fingers, however at higher rates (200 and 400 ms), the introduction of a force parameter resulted in fluctuations of the phase relation of the fingers, which were followed by pattern shifts from anti-phase to in-phase tapping. The results indicate that movement force and rate of movement interact to influence the outcome of the tapping pattern. Further research is required to investigate force as a control parameter.  相似文献   

10.
Interresponse intervals (IRIs) were recorded as 8 right-handed male subjects tapped a key separately with the index finger of each hand as fast as possible for twenty 10-s runs. Frequency distributions of the IRIs produced by each hand showed that the shorter mean IRI that is usually reported for preferred-hand tapping is a result of a systematic production of shorter IRIs by the preferred hand. It is not secondary to inflation of the mean IRI of the non-preferred hand by the sporadic occurrence of long IRIs.  相似文献   

11.
The goal was to assess whether prior studies might have overestimated performance variability in older adults in dual task conditions by relying on primary motor tasks that are not constant with aging. 30 younger and 31 older adults performed a bimanual tapping task at four different frequencies in isolation or concurrently with a secondary task. Results showed that performance of younger and older adults was not significantly different in performing the tapping task at all frequencies and with either secondary task, as indicated by mean tapping performance and low number of errors in the secondary tasks. Both groups showed increased variability as tapping frequency increased and with the presence of a secondary task. Tapping concurrently while reading words increased tapping variability more than tapping concurrently while naming colours. Although older participants' performances were overall more variable, no interaction effects with age were found and at the highest frequencies of tapping, younger and older participants did not differ in performance.  相似文献   

12.
13.
An experiment was conducted to examine the control of force and timing in bimanual finger tapping. Participants were trained to produce both unimanual (left or right hand) and bimanual finger-tapping sequences with a peak force of 200 g and an intertap interval (ITI) of 400 ms. During practice, visual force feedback was provided pertaining to the hand performing the unimanual tapping sequences and to either the dominant or the nondominant hand in the bimanual tapping sequences. After practice, the participants produced the learned unimanual and bimanual tapping sequences in the absence of feedback. In those trials the force produced by the dominant (right) hand was significantly larger than that produced by the nondominant (left) hand, in the absence of a significant difference between the ITIs produced by both hands. Furthermore, after unilateral feedback had been provided of the force produced by the nondominant hand, the force output of the dominant hand was significantly more variable than that of the nondominant hand. In contrast, after feedback had been provided of the force produced by the dominant hand, the variability of the force outputs of the two hands did not differ significantly. These results were discussed in the light of both neurophysiological and anatomical findings, and were interpreted to imply that the control of timing (in bimanual tasks) may be more tightly coupled in the motor system than the control of force.  相似文献   

14.
Multiple or sequential finger tapping is preferential to the dominant right hand with respect to speed. However, in more complex movement, variables other than speed become important. The present investigation uses a sequential finger-tapping task which permits assessment of between-hands differences with respect to rate and control of movement, with and without vision. 36 right-handed normal adults rapidly tapped their fingers in sequential order on a block (2.54 cm. sq.), trying not to move the block. Analyses of variance (mode x hand) performed for taps and shift of the block show the right hand to be faster than the left hand with and without vision, adding further to the notion that the left hemisphere predominates in increases in rapid movement and in sequencing aspects of motor activity. However, while both hands were steadier with vision than without, there were no between-hand differences with regard to control, suggesting equivalency of cerebral function for factors of manual sequencing other than speed.  相似文献   

15.
《Brain and cognition》2010,72(3):345-353
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Although a variety of behavioral studies have provided strong evidence for perceptual timing deficits in schizophrenia, no study to date has directly examined overt temporal performance in schizophrenia using a task that differentially engages perceptual and motor-based timing processes. The present study aimed to isolate perceptual and motor-based temporal performance in individuals diagnosed with schizophrenia using a repetitive finger-tapping task that has previously been shown to differentially engage brain regions associated with perceptual and motor-related timing behavior. Thirty-two individuals with schizophrenia and 31 non-psychiatric control participants completed the repetitive finger-tapping task, which required participants to first tap in time with computer-generated tones separated by a fixed intertone interval (tone-paced tapping), after which the tones were discontinued and participants were required to continue tapping at the established pace (self-paced tapping). Participants with schizophrenia displayed significantly faster tapping rates for both tone- and self-paced portions of the task compared to the non-psychiatric group. Individuals diagnosed with schizophrenia also displayed greater tapping variability during both tone- and self-paced portions of the task. The application of a mathematical timing model further indicated that group differences were primarily attributable to increased timing – as opposed to task implementation – difficulties in the schizophrenia group, which is noteworthy given the broad range of impairments typically associated with the disorder. These findings support the contention that schizophrenia is associated with a broad range of timing difficulties, including those associated with time perception as well as time production.  相似文献   

16.
The authors' goal in this study was to probe the basis for an earlier, unexpected finding that preferred-frequency finger tapping tends to have higher frequencies and to be less stable for in-phase than for antiphase tasks. In follow-up experiments, 3 protocols were employed: a preferred-frequency replication in both coordination modes, a metronome-driven matching of the preferred frequencies to each of the coordination modes, and a frequency scaling of both modes. The original findings were affirmed for preferred frequency. Tapping to a metronome had a differential effect on in-phase and antiphase: A more stable coupling across frequencies was exhibited during in-phase. Under frequency scaling, the antiphase pattern decomposed at lower frequencies than did in-phase, but no phase transitions were observed. The loss of stable coordination in both modes was attended by sudden increases in frequency differences between fingers and by phase wandering. The emergence of those effects is discussed in light of asymmetric modifications to the Haken-Kelso-Bunz model (H. Haken, J. A. S. Kelso, & H. Bunz, 1985) and the task constraints of tapping.  相似文献   

17.
Interference between concurrent tasks was used to investigate the brain basis of capacity limitations apparent when children encode information. Seventy-three right-handed children in Grades 1-4 engaged in speeded unilateral finger tapping while encoding a variable number of faces or numbers for subsequent recognition testing. With both face and number encoding, tapping rate decreased as memory load increased. Encoding numbers was more disruptive than encoding faces. Both encoding tasks slowed right-hand tapping more than left-hand tapping, relative to control tapping performance, but had only a bilateral effect on the variability of tapping. Although overall interference was less than that observed with a comparison task (i.e., speaking), the asymmetry of interference was comparable. The results suggest that cerebral lateralization for memory encoding, as well as for speech, is constant across the age range of 6-10 years. Findings regarding developmental change in overall capacity, however, are task specific: interference from speaking but not from memory encoding decreases with increasing age.  相似文献   

18.
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Although a variety of behavioral studies have provided strong evidence for perceptual timing deficits in schizophrenia, no study to date has directly examined overt temporal performance in schizophrenia using a task that differentially engages perceptual and motor-based timing processes. The present study aimed to isolate perceptual and motor-based temporal performance in individuals diagnosed with schizophrenia using a repetitive finger-tapping task that has previously been shown to differentially engage brain regions associated with perceptual and motor-related timing behavior. Thirty-two individuals with schizophrenia and 31 non-psychiatric control participants completed the repetitive finger-tapping task, which required participants to first tap in time with computer-generated tones separated by a fixed intertone interval (tone-paced tapping), after which the tones were discontinued and participants were required to continue tapping at the established pace (self-paced tapping). Participants with schizophrenia displayed significantly faster tapping rates for both tone- and self-paced portions of the task compared to the non-psychiatric group. Individuals diagnosed with schizophrenia also displayed greater tapping variability during both tone- and self-paced portions of the task. The application of a mathematical timing model further indicated that group differences were primarily attributable to increased timing – as opposed to task implementation – difficulties in the schizophrenia group, which is noteworthy given the broad range of impairments typically associated with the disorder. These findings support the contention that schizophrenia is associated with a broad range of timing difficulties, including those associated with time perception as well as time production.  相似文献   

19.
In order to investigate the development of movement speed in relation to movement organization, children of 5, 6, 7, 8 and 9 years of age and adults carried out a reciprocal tapping task, in which time pressure and distance were manipulated. The duration, velocity, acceleration and accuracy of the movements were compared between age groups. Age differences appeared mainly in the homing time, not in the duration of the distance covering movement phase. Accuracy and velocity of the distance covering movement phase differed with age. Time pressure affected the homing time, but not the duration of the distance covering phase. Distance manipulation affected mainly the velocity and duration of the distance covering movement phase and the homing time. In the discussion it is contended that age differences in homing time may be related to both the accuracy of the distance covering movement phase and the rate of information processing of the subject.  相似文献   

20.
After falling into disfavor in the early 1990s, the construct of body image, as measured by body-size estimation (BSE) techniques, has been the focus of increasing interest in the eating disorder literature because of recent theoretical, empirical, and methodological advances. However, no published BSE measure to date has been shown to be psychometrically sound, well normed, inexpensive, and straightforward. This article provides normative and psychometric data for an adapted silhouette BSE measure. Comprehensive normative data are presented on college women's cognitively and affectively based body-size estimates, as well as their desired body size and related discrepancy indexes (cognitive vs. desired, affective vs. desired, affective vs. cognitive). Preliminary data indicate that indexes from the new measure are moderately reliable over time, consistent with their theoretical link to fluctuations in body-related attitudes. Data also support the convergent validity of the measures. Affectively based BSE, alone or as part of a discrepancy measure with desired body size, was most strongly related to measures of eating pathology, body focus, body dissatisfaction, and depressed affect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号