首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human odometry. Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. Lessons are drawn from modeling the dynamics of behaviors executed in parallel (e.g., interlimb coordination) to model the dynamics of human odometry, in which the behaviors are executed sequentially. The major observations are characterized in terms of a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of that dynamic.  相似文献   

2.
Abstract

In this study, we acquired and processed trunk accelerations during level walking in 85 children aged 8-13?years to calculate spatio-temporal parameters and Harmonic Ratio (HR), which is a metrics representative of gait smoothness and step-to-step symmetry. The results show that while spatio-temporal parameters remain unchanged once normalized considering individuals’ anthropometry, significantly higher values of HR for both the antero-posterior and vertical directions were found in participants aged 12–13 with respect to those of 8–9. This indicates an improvement of gait symmetry, which suggests that the gait maturation process is still ongoing for the age ranges tested here.  相似文献   

3.
Abstract

Variability in the temporal structure of gait patterns, measured by “Fractal Index” (FI), is thought to represent abundancy of movement patterns facilitating adaptive control of walking. However we do not know how FI changes according to different walking rhythms or if this is repeatable, as needed to exploit the paradigm for rehabilitation. Fourteen healthy young adults synchronised heel contact to an auditory metronome twice each in four conditions (uncued, white noise, pink noise, and red noise) and three sessions. FI differed based on the walking condition while no effect of session was revealed. The results of this study suggest gait fractality changes systematically with different stimuli and can be consistently prescribed in a desired direction within a group of healthy young individuals.  相似文献   

4.
BackgroundHuman walking involves a rapid and powerful contraction of ankle plantar flexors during push-off in late stance.ObjectiveHere we investigated whether impaired push-off force contributes to gait problems in children with cerebral palsy (CP) and whether it may be improved by intensive gait training.MethodsSixteen children with CP (6–15 years) and fourteen typically developing (TD) children (4–15 years) were recruited. Foot pressure was measured by insoles and gait kinematics were recorded by 3-dimensional video analysis during treadmill and overground walking. The peak derivative of ground reaction force at push off (dPF) was calculated from the foot pressure measurements. Maximal voluntary plantar flexion (MVC) was measured while seated. Measurements were performed before and after a control period and after 4 weeks of 30 minutes daily inclined treadmill training.ResultsdPF and MVC were significantly lower in children with CP on the most affected (MA) as compared to TD children (p < .001). dPF was lower on the MA leg as compared to the less affected (LA) leg in children with CP (p < .05). Following gait training, increases in dPF (p < .001) and MVC (p < .01) were observed for the MA leg. Following gait training children with CP showed similar timing of dPF and similar stance phase duration on both legs indicating improved symmetry of gait. These effects were also shown during overground walking.ConclusionImpaired ability to voluntarily activate ankle plantar flexors and produce a rapid and powerful push-off during late stance are of importance for impaired gait function in children with CP. Intensive treadmill training may facilitate the drive to ankle plantar flexors and reduce gait asymmetry during both treadmill and overground walking.  相似文献   

5.
Most human gait forms assume symmetrical, alternating patterns of interlimb coordination (e.g., crawling, walking, running). Human galloping is a notable exception. In contrast to extensive information on galloping in animals, little is known about this gait in humans. Therefore, kinematic and topographical analyses of running and galloping were undertaken to investigate the manner in which the lower limbs are uncoupled to produce this asymmetrical gait. Seven adult females were filmed while running and galloping at their preferred speed. Analysis of the gaits revealed differences in the following: (a) preferred speed, (b) coupling between upper- and lower-limb girdles, and (c) point of foot fall (end-point trajectories). In contrast to clear differences in interlimb coordination, intralimb coordination was remarkably similar across gaits, although when galloping was adopted, the rear leg did show more variable change than the front leg.  相似文献   

6.
Human intra limb gait kinematics were analyzed via statistical and structural pattern recognition methods to determine the role of relative timing of limb segments within and between modes of gait. Five experienced runners were filmed while walking (3-6 km/hour) and running (8-12 km/hour) on a motor driven treadmill. Kinematic data consisted of relative timing of the four phases of the Philippson step cycle and intersegmental limb trajectories, determined from angle-angle diagrams. Despite marked decreases in absolute time durations within gaits remained constant over the speeds which were studied. Although a 2-fold increase in locomotor speed occurred in walking and a 1.5-fold speed increase occurred within running, the percentage of time spent in each of the Philippson phases was not significantly changed. However, significant differences in the time percentages and sequences of the step cycle phases were found between walking and running. Correlations between limb segment trajectories occurring in the different gaits showed strong coherence for overall step cycle patterns, but within step cycle phases and across speeds, selective phases displayed little correspondence.  相似文献   

7.
Study designA prospective, observational study.ObjectivesTo assess the attentional demands of using haptic modalities during walking using a multi-task paradigm in young, healthy adults.SettingBiomechanics of Balance and Movement (BBAM) Lab, University of Saskatchewan.MethodsTwenty-two (12 male) young, healthy adults performed walking trials with and without a verbal reaction time (VRT) task, as well as with and without the use of haptic anchors and light touch on a railing. Walking performance was evaluated using normalized stride velocity and step width, and dynamic stability was evaluated using step width variability and medial-lateral margin of stability (ML MOS) and its variability.ResultsThere were no significant differences in VRT when walking with and without added haptic input and no interactions between the added VRT task and added haptic input. Step width increased and variability of the ML MOS increased during trials with the VRT task compared to trials without the VRT task. The ML MOS decreased when using both haptic tools with a greater decrease when using light touch on the railing compared to when using the haptic anchors. Normalized stride velocity and step width decreased when using light touch on the railing only.ConclusionBoth haptic tools affected stability during walking. Using the railing to add haptic input had a greater effect on walking stability and was the only haptic tool to affect walking performance. Attentional demands should be considered in future research and applications of adding haptic input during walking.  相似文献   

8.
Humans and other animals can measure distances nonvisually by legged locomotion. Experiments typically employ an outbound measure (M) and an inbound report (R) phase. Previous research has found distance reproduction to be maximally accurate, when gait symmetry and speed of M and R are of like kind: Successful human odometry manifests at the level of the M-R system. In the present work, M was an experimenter-set distance produced by a blindfolded participant using a primary gait (walk, run). R was always by walk. Fast and slow versions of walk and run were adopted by participants, such that when M was fast R was slow, and vice versa. Distance was underestimated when M was slower than R and overestimated when M was faster than R. However, the pattern of participant-adopted velocities indicated that it was the instructions, not the speed as such, that yielded the pattern of results. The results are interpretable through a dynamical perspective and indicate speed is an imperfection parameter acting on the attractors of the M-R system.  相似文献   

9.
Our ability of perceive the identity and naturalness of a human gait is examined in a series of four experiments involving computer-animated stick figures. The results indicate that the perceived naturalness of a walking or running gait can be influenced by the motion of any limb segment, but the perceived identity of these gaits is primarily determined by the movements of the lower leg (i.e., the tibia). The results also demonstrate that a perceptually salient walking gait can be transformed into running (or vice versa) by adding or subtracting a constant value to the angle of the lower leg over the entire step cycle. The size of this constant value is affected by the shape of the lower leg angle function and the motion of other limb segments.  相似文献   

10.
According to Gestalt theory, the perceptual system works on economic principles and tends to reach the maximum efficiency (i.e., increase of quality, goodness, and accuracy) with minimum invested energy (i.e., reduction of processing load). In this study the effects of two concurrent stimulus constraints, symmetry and simplicity, were investigated with the following variables related to perceptual economy: Goodness judgement (Experiment 1), completion of semi-structured patterns (Experiment 2), duration of search for target patterns (Experiment 3), and the duration and accuracy of pattern detection (Experiment 4). The results suggest that the dominance of symmetry or simplicity depends upon the difficulty of the experimental task. Symmetry prevailed in less restrictive, more interesting, and easier perceptual tasks, such as goodness judgement and pattern completion (Experiments 1, 2, and, partly, Experiment 3), whereas simplicity prevailed in difficult and restricted conditions, such as the detection of briefly exposed stimuli (50 ms; Experiment 4). The results are discussed in the context of Koffka's concept of minimum and maximum simplicity. When the perceptual system has a small energy disposal, or when external conditions are difficult and restricted (minimum simplicity conditions), simplicity in stimulus pattern organization will be preferred. When the perceptual system has a large amount of energy, or when external situations are unrestricted and interesting (maximum simplicity conditions), fine and regular articulations of stimulus patterns will be preferred. Our study confirmed the prediction implied by the concept of minimum and maximum simplicity.  相似文献   

11.
IntroductionMild traumatic brain injury (mTBI) can impact gait, with deficits linked to underlying neural disturbances in cognitive, motor and sensory systems. Gait is complex as it is comprised of multiple characteristics that are sensitive to underlying neural deficits. However, there is currently no clear framework to guide selection of gait characteristics in mTBI. This study developed a model of gait in chronic mTBI and replicated this in a separate group of controls, to provide a comprehensive and structured methodology on which to base gait assessment and analysis.MethodsFifty-two people with chronic mTBI and 59 controls completed a controlled laboratory gait assessment; walking for two minutes back and forth over a 13 m distance while wearing five wirelessly synchronized inertial sensors. Thirteen gait characteristics derived from the inertial sensors were selected for entry into the principle component analysis based on previous literature, robustness and novelty. Principle component analysis was then used to derive domains (components) of gait.ResultsFour gait domains were derived for our chronic mTBI group (variability, rhythm, pace and turning) and this was replicated in a separate control cohort. Domains totaled 80.8% and 77.4% of variance in gait for chronic mTBI and controls, respectively. Gait characteristic loading was unambiguous for all features, with the exception of gait speed in controls that loaded on pace and rhythm domains.ConclusionThis study contributes a four component model of gait in chronic mTBI and controls that can be used to comprehensively assess and analyze gait and underlying mechanisms involved in impairment, or examine the influence of interventions.  相似文献   

12.
We present modality exclusivity norms for 400 randomly selected noun concepts, for which participants provided perceptual strength ratings across five sensory modalities (i.e., hearing, taste, touch, smell, and vision). A comparison with previous norms showed that noun concepts are more multimodal than adjective concepts, as nouns tend to subsume multiple adjectival property concepts (e.g., perceptual experience of the concept baby involves auditory, haptic, olfactory, and visual properties, and hence leads to multimodal perceptual strength). To show the value of these norms, we then used them to test a prediction of the sound symbolism hypothesis: Analysis revealed a systematic relationship between strength of perceptual experience in the referent concept and surface word form, such that distinctive perceptual experience tends to attract distinctive lexical labels. In other words, modality-specific norms of perceptual strength are useful for exploring not just the nature of grounded concepts, but also the nature of form–meaning relationships. These norms will be of benefit to those interested in the representational nature of concepts, the roles of perceptual information in word processing and in grounded cognition more generally, and the relationship between form and meaning in language development and evolution.  相似文献   

13.
How do infants plan and guide locomotion under challenging conditions? This experiment investigated the real‐time process of visual and haptic exploration in 14‐month‐old infants as they decided whether and how to walk over challenging terrain – a series of bridges varying in width. Infants’ direction of gaze was recorded with a head‐mounted eye tracker and their haptic exploration and locomotor actions were captured on video. Infants’ exploration was an organized, efficient sequence of visual, haptic, and locomotor behaviors. They used visual exploration from a distance as an initial assessment on nearly every bridge. Visual information subsequently prompted gait modifications while approaching narrow bridges and haptic exploration at the edge of the bridge. Results confirm predictions about the sequential, ramping‐up process of exploration and the distinct roles of vision and touch. Exploration, however, was not a guarantee of adaptive decisions. With walking experience, exploratory behaviors became increasingly efficient and infants were better able to interpret the resulting perceptual information in terms of whether it was safe to walk.  相似文献   

14.
The objective of this study was to determine (1) if a novel haptic feedback system could increase the walking speed of older adults while it is being employed during overground walking and (2) whether the frequency at which this feedback was presented would have a differential impact on the ability of users to change walking speed while it was present. Given that peak thigh extension has been found to be a biomechanical surrogate for stride length, and consequently gait speed, vibrotactile haptic feedback was provided to the participants' thighs as a cue to increase peak thigh extension while the effect on gait speed was monitored. Ten healthy community-dwelling older adults (68.4 ± 4.1 years) participated. Participants' peak thigh extension, cadence, normalized stride length and velocity, along with their coefficients of variation (COV) were compared across baseline normal and fast walking (with no feedback) and three different frequency of feedback conditions. The findings indicated that, compared to self-selected normal and fast walking speeds, peak thigh extension was significantly increased when feedback was present and after it was withdrawn in a post-test. An increase in thigh extension led to an increase in stride length and, consequently, an increase in stride velocity compared to normal speed. There were no significant differences in the gait parameters as a function of feedback frequency during its application. In conclusion, while present, the haptic feedback system increased thigh extension and walking speed in older adults regardless of the feedback frequency and when the feedback was withdrawn, participants could maintain an increase in those parameters.  相似文献   

15.
Understanding gait adaptation is essential for rehabilitation, and visual feedback can be used during gait rehabilitation to develop effective gait training. We have previously shown that subjects can adapt spatial aspects of walking to an implicitly imposed distortion of visual feedback of step length. To further investigate the storage benefit of an implicit process engaged in visual feedback distortion, we compared the robustness of aftereffects acquired by visual feedback distortion, versus split-belt treadmill walking. For the visual distortion trial, we implicitly distorted the visual representation of subjects’ gait symmetry, whereas for the split-belt trial, the speed ratio of the two belts was gradually adjusted without visual feedback. After adaptation, the visual feedback or the split-belt perturbation was removed while subjects continued walking, and aftereffects of preserved asymmetric pattern were assessed. We found that subjects trained with visual distortion trial retained aftereffects longest. In response to the larger speed ratio of split-belt walking, the subjects showed an increase in the size of aftereffects compared to the smaller speed ratio, but it steeply decreased over time in all the speed ratios tested. In contrast, the visual distortion group showed much slower decreasing rate of aftereffects, which was evidence of longer storage of an adapted gait pattern. Visual distortion adaptation may involve the interaction and integration of the change in motor strategy and implicit process in sensorimotor adaptation. Although it should be clarified more clearly through further studies, the findings of this study suggest that gait control employs distinct adaptive processes during the visual distortion and split-belt walking and also the level of reliance of an implicit process may be greater in the visual distortion adaptation than the split-belt walking adaptation.  相似文献   

16.
Dot patterns varying in type of symmetry (double symmetry, vertical symmetry, horizontal symmetry, and asymmetry) were presented tachistoscopically for 200 msec, followed by a patterned mask, to kindergarten, second-grade, and fourthgrade children. All subjects reported symmetrical patterns more accurately than asymmetrical patterns. Double symmetry patterns were reproduced more accurately than vertical symmetry patterns, and vertical symmetry patterns were reproduced more accurately than horizontal symmetry patterns. These results stand in marked contrast to previous research by demonstrating that the ability to process symmetrical relationships evolves early in perceptual development. There was a suggestion that subjects of all ages perceived information about the type of symmetry presented in the display, but there were agerelated differences in subjects' abilities to use this knowledge in constructing their responses. Additionally, analyses revealed no age-related biases toward imposing symmetrical responses on asymmetrical patterns.  相似文献   

17.
Human locomotion is a fundamental skill that is required for daily living, yet it is not completely known how human gait is regulated in a manner that seems so effortless. Gait transitions have been analyzed to gain insight into the control mechanisms of human locomotion since there is a known change that occurs as the speed of locomotion changes. Specifically, as gait speed changes, there is a spontaneous transition between walking and running that occurs at a particular speed. Despite the growing body of research on the determinants of this preferred transition speed and thus the triggering mechanisms of human gait transitions, a clear consensus regarding the control mechanisms of gait is still lacking. Therefore, this article reviews the determinants of the preferred transition speed using concepts of the dynamic systems theory and how these determinants contribute to four proposed triggers (i.e. metabolic efficiency, mechanical efficiency, mechanical load and cognitive and perceptual) of human gait transitions. While individual anthropometric and strength characteristics influence the preferred transition speed, they do not act to trigger a gait transition. The research has more strongly supported the mechanical efficiency and mechanical load determinants as triggering mechanisms of human gait transitions. These mechanical determinants, combined with cognitive and perceptual processes may thus be used to regulate human gait patterns through proprioceptive and perceptual feedback as the speed of locomotion changes.  相似文献   

18.
Abstract

Patients who require neurological rehabilitation often do not comply with conventional programs because they find the therapy uninteresting. As a result, specialized interactive video games have been designed to be more enjoyable than conventional therapy (CT) tasks. This study aimed to assess the trunk control and gait ability of patients with chronic stroke after participation in driving-based interactive video games (DBIVG). Participants included 24 chronic stroke patients allocated to an experimental group (n?=?13, CT?+?DBIVG) or a control group (n?=?11, CT?+?treadmill walking training). Both groups received CT five days/week; the experimental and control groups participated in DBIVG and treadmill walking training, respectively, three days/week for four weeks. The primary outcome of trunk control was measured by the trunk impairment scale (TISall) and TIS subscales, including static sitting balance (TISssb), dynamic sitting balance (TISdsb), and trunk co-ordination (TISco). Gait ability was measured by the dynamic gait index (DGI), timed walking test (TWT), and time up and go test (TUGT). Both groups demonstrated significant improvements in TISall, TISdsb, and TUGT results. The experimental group showed significantly greater improvement in TISssb, TISco, and DGI than the control group. Our findings indicate that DBIVG can improve trunk control and gait ability in patients with chronic stroke.  相似文献   

19.
BackgroundAnxiety disorders are the most common mental disorders. Changes in psychomotor behavior can be observed in gross motor skills, with gait disturbances thought to reflect defective brain functions in psychiatric conditions. While balance deficits are well documented in anxiety, only little is known about gait characteristics of people with anxiety.ObjectiveThis study wishes to examine the existence of differences in gait, balance, mobility and muscle strength between people with anxiety and healthy individuals, and to investigate the relationship between level of anxiety and motor characteristics.MethodsAn observational study was conducted in a psychiatric out-patient unit at a large Israeli general hospital. The sample consisted of 93 participants, ages 18–65: 48 of them (27 female, 21 male) categorized as having anxiety, and 45 (25 female, 20 male) without anxiety. Participants were divided into two groups of various ages and both genders, and completed two questionnaires and four physical tests: objective anxiety assessment (Hamilton Anxiety Rating Scale); spatiotemporal gait parameters (10-meter walking test); balance function (Unipedal Stance Test); muscle strength evaluation, and mobility (Time Up and Go Test). No attempt was made to correlate between the anxiety and control groups based on age and/or gender.ResultsParticipants with anxiety (both genders) were characterized by slower walking speed, shorter step length, and fewer steps per minute (p < 0.001), as well as balance deficiency and mobility dysfunction (p < 0.001), compared to the control group. Muscle strength in women with anxiety was found to be significantly lower than in healthy women.ConclusionsTo the best of our knowledge, this study is the first of its kind to examine spatiotemporal gait components in patients with anxiety. Based on the findings, there is room to consider implementing gait analysis into the physical examination of patients with anxiety, as well as muscle strength, balance, and mobility function. Correct assessment and proper treatment of these aspects might contribute to the well-being of patients with anxiety.  相似文献   

20.
What drives humans around the world to converge in certain ways in their naming while diverging dramatically in others? We studied how naming patterns are constrained by investigating whether labeling of human locomotion reflects the biomechanical discontinuity between walking and running gaits. Similarity judgments of a student locomoting on a treadmill at different slopes and speeds revealed perception of this discontinuity. Naming judgments of the same clips by speakers of English, Japanese, Spanish, and Dutch showed lexical distinctions between walking and running consistent with the perceived discontinuity. Typicality judgments showed that major gait terms of the four languages share goodness-of-example gradients. These data demonstrate that naming reflects the biomechanical discontinuity between walking and running and that shared elements of naming can arise from correlations among stimulus properties that are dynamic and fleeting. The results support the proposal that converging naming patterns reflect structure in the world, not only acts of construction by observers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号