首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a beta-adrenergic or muscarinic cholinergic agonist requires concurrent activation of dopamine (DA) receptors in the BLA. Rats with implanted BLA cannulae were trained on an inhibitory avoidance (IA) task and, 48 h later, tested for retention. Infusions of the beta-adrenergic agonist clenbuterol into the right BLA, but not the left, enhanced retention, and concurrent infusions of the nonspecific DA receptor antagonist cis-Flupenthixol (Flu) blocked the enhancement. Post-training infusions of the muscarinic agonist oxotremorine into the right BLA also enhanced retention, and concurrent infusions of Flu blocked this effect. Additional experiments investigated whether memory modulation was lateralized to the right BLA. Post-training DA infusions into the right BLA, but not the left, enhanced retention. Post-training infusions of lidocaine or muscimol, which impair retention when infused bilaterally, had no effect when infused unilaterally into either the right or left BLA. These findings, together with earlier work, suggest that the dopaminergic system in the BLA is critically involved in memory modulation induced by noradrenergic and cholinergic influences. Additionally, these findings indicate that the enhancement, but not impairment, of memory consolidation is lateralized to the right BLA.  相似文献   

2.
Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigated whether the BLA and rACC interact in enabling OXO effects on memory. In the first experiment, male Sprague-Dawley rats were implanted with bilateral cannulae above the rACC and given immediate posttraining OXO infusions. OXO (0.5 or 3 ng) induced significant enhancement of retention performance on a 48-h test. In the second experiment, unilateral posttraining OXO infusions (0.5, 3.0 or 10 ng) enhanced retention when infused into rACC, but not caudal ACC, consistent with previous evidence that ACC is composed of functionally distinct regions. A third experiment investigated the effects of posttraining intra-rACC OXO infusions (0.5 or 10 ng) in rats with bilateral sham or NMDA-induced lesions of the BLA. The BLA lesions did not impair IA retention, but blocked the enhancement induced by posttraining intra-rACC OXO infusions. Lastly, unilateral NMDA lesions of rACC blocked the enhancement of IA retention induced by posttraining ipsilateral OXO infusions into the BLA. These findings support the hypothesis that the rACC is involved in modulating the storage of emotional events and provide additional evidence that the BLA modulates memory consolidation through interactions with efferent brain regions, including the cortex.  相似文献   

3.
Evidence from previous studies indicates that the noradrenergic and GABAergic influences within the basolateral amygdala (BLA) modulate the consolidation of memory for fear conditioning. The present experiments investigated whether the same modulatory influences are involved in regulating the extinction of fear-based learning. To investigate this issue, male Sprague Dawley rats implanted with unilateral or bilateral cannula aimed at the BLA were trained on a contextual fear conditioning (CFC) task and 24 and 48 h later were given extinction training. Immediately following each extinction session they received intra-BLA infusions of the GABAergic antagonist bicuculline (50 ng), the beta-adrenocepter antagonist propranolol (500 ng), bicuculline with propranolol, norepinephrine (NE) (0.3, 1.0, and 3.0 microg), the GABAergic agonist muscimol (125 ng), NE with muscimol or a control solution. To investigate the involvement of the dorsal hippocampus (DH) as a possible target of BLA activation during extinction, other animals were given infusions of muscimol (500 ng) via an ipsilateral cannula implanted in the DH. Bilateral BLA infusions of bicuculline significantly enhanced extinction, as did infusions into the right, but not left BLA. Propranolol infused into the right BLA together with bicuculline blocked the bicuculline-induced memory enhancement. Norepinephrine infused into the right BLA also enhanced extinction, and this effect was not blocked by co-infusions of muscimol. Additionally, muscimol infused into the DH did not attenuate the memory enhancing effects of norepinephrine infused into the BLA. These findings provide evidence that, as with original CFC learning, noradrenergic activation within the BLA modulates the consolidation of CFC extinction. The findings also suggest that the BLA influence on extinction is not mediated by an interaction with the dorsal hippocampus.  相似文献   

4.
It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function. Corticosterone (1.0 or 3.0 mg/kg) administered subcutaneously to male Sprague–Dawley rats immediately after the pairing of saccharin consumption with the visceral malaise-inducing agent lithium chloride (LiCl) dose-dependently increased aversion to the saccharin taste on a 96-h retention test trial. In a second experiment, rats received corticosterone either immediately after saccharin consumption or after the LiCl injection, when both stimuli were separated by a 3-h time interval, to investigate whether corticosterone enhances memory of the gustatory or visceral stimulus presentation. Consistent with the finding that the LiCl injection, but not saccharin consumption, increases endogenous corticosterone levels, corticosterone selectively enhanced CTA memory when administered after the LiCl injection. Suppression of this training-induced release of corticosterone with the synthesis-inhibitor metyrapone (35 mg/kg) impaired CTA memory, and was dose-dependently reversed by post-training supplementation of corticosterone. Moreover, direct post-training infusions of corticosterone into the insular cortex or basolateral complex of the amygdala, two brain regions that are critically involved in the acquisition and consolidation of CTA, also enhanced CTA retention, whereas post-training infusions into the dorsal hippocampus were ineffective. These findings provide evidence that glucocorticoid effects on memory consolidation are not limited to hippocampus-dependent spatial/contextual information, but that these hormones also modulate memory consolidation of discrete-cue associative learning via actions in other brain regions.  相似文献   

5.
The importance of central β-adrenergic system has been essentially investigated in aversive/emotional learning tasks. However, recent data suggest that the β-adrenergic system is also required for incidental taste learning. In the present study we evaluated in rats whether β-adrenergic receptor activity is required for taste habituation, an incidental taste learning, and also for conditioned taste aversion (CTA) learning, an associative learning. To address this issue, a low dose of the β-adrenergic antagonist propranolol was infused before learning in either the basolateral amygdala (BLA) or the insular cortex (IC), two forebrain areas reported to play a key role in taste memory formation. Incidental taste learning was assessed using a single presentation of the sweet taste saccharin 0.1%, which is sufficient to increase saccharin consumption (relative to water baseline) during a second presentation. CTA was assessed by pairing the first saccharin 0.1% presentation with a delayed gastric malaise, thus causing a decrease in saccharin consumption (relative to water baseline) during a second presentation. Propranolol infusion in BLA (1 μg/0.2μl) or IC (2.5 μg/0.5 μl) before the first taste exposure impaired incidental taste learning but did not affect CTA. These results highlight the important role played by the β-adrenergic receptor activation in cortical and amygdaloid structures during taste learning. Moreover, they are the first to suggest that incidental learning is more sensitive to blockade of noradrenergic system than associative learning.  相似文献   

6.
Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin (OFQ/N), an opioid-like peptide with anxiolytic and amnestic properties, the present experiments investigated whether the BLA is involved in mediating OFQ/N effects on memory consolidation and whether such effects require noradrenergic activity. OFQ/N (0.01-100 pmol in 0.2 microL) administered bilaterally into the BLA of male Sprague-Dawley rats immediately after aversively motivated inhibitory avoidance training induced dose-dependent impairment on a 48-h retention trial. The beta(1)-adrenoceptor antagonist atenolol (2.0 nmol) administered concurrently into the BLA potentiated the dose-response effects of OFQ/N. In contrast, immediate post-training infusions of the peptidergic OFQ/N receptor antagonist [Nphe(1)]nociceptin(1-13)NH(2) (1-100 pmol in 0.2 microL) into the BLA enhanced 48-h retention of inhibitory avoidance training, an effect that was blocked by coadministration of atenolol. Delayed infusions of OFQ/N or [Nphe(1)]nociceptin(1-13)NH(2) into the BLA administered either 6 or 3 h after training, respectively, or immediate post-training infusions of OFQ/N into the adjacent central amygdala did not significantly alter retention performance. These findings indicate that endogenously released OFQ/N interacts with noradrenergic activity within the BLA in modulating memory consolidation.  相似文献   

7.
Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats ( approximately 300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h later, they were tested for retention. Drugs were infused into the BLA and NAc shell or core immediately after training. Post-training intra-BLA infusions of DA enhanced retention, as assessed by latencies to enter the shock compartment on the retention test. Infusions of the general DA receptor antagonist cis-Flupenthixol (Flu) into the NAc shell (but not the core) blocked the memory enhancement induced by the BLA infusions of DA. In the reverse experiment, post-training intra-NAc shell infusions of DA enhanced retention and Flu infusions into the BLA blocked the enhancement. These findings indicate that BLA modulation of memory consolidation requires concurrent DA receptor activation in the NAc shell but not the core. Similarly, NAc shell modulation of memory consolidation requires concurrent DA receptor activation in the BLA. Together with previous findings, these results suggest that the dopaminergic innervation of the BLA and NAc shell is critically involved in the modulation of memory consolidation.  相似文献   

8.
Previous studies have reported that drugs affecting neuromodulatory systems within the basolateral amygdala (BLA), including drugs affecting muscarinic cholinergic receptors, modulate the consolidation of many kinds of training, including contextual fear conditioning (CFC). The present experiments investigated the involvement of muscarinic cholinergic influences within the BLA in modulating the consolidation of CFC extinction memory. Male Sprague Dawley rats implanted with unilateral cannula aimed at the BLA were trained on a CFC task, using footshock stimulation, and 24 and 48 h later were given extinction training by replacing them in the apparatus without footshock. Following each extinction session they received intra-BLA infusions of the cholinergic agonist oxotremorine (10 ng). Immediate post-extinction BLA infusions significantly enhanced extinction but infusions administered 180 min after extinction training did not influence extinction. Thus the oxotremorine effects were time-dependent and not attributable to non-specific effects on retention performance. These findings provide evidence that, as previously found with original CFC learning, cholinergic activation within the BLA modulates the consolidation of CFC extinction.  相似文献   

9.
The present experiment examined whether posttraining noradrenergic activity within the basolateral complex of the amygdala (BLA) is required for mediating the facilitating effects of acutely administered glucocorticoids on memory for auditory-cue classical fear conditioning. Male Sprague-Dawley rats received five pairings of a single-frequency auditory stimulus and footshock, followed immediately by bilateral infusions of the beta1-adrenoceptor antagonist atenolol (0.5 microg in 0.2 microl) or saline into the BLA together with a subcutaneous injection of either corticosterone (3.0 mg/kg) or vehicle. Retention was tested 24 h later in a novel test chamber and suppression of ongoing motor behavior served as the measure of conditioned fear. Corticosterone facilitated memory as assessed by suppression of motor activity during the 10-s presentation of the auditory stimulus and intra-BLA administration of atenolol selectively blocked this corticosterone-induced memory enhancement. These findings provide evidence that, as found with other emotionally arousing tasks, the enhancing effects of corticosterone on memory consolidation of auditory-cue fear conditioning require posttraining noradrenergic activity within the BLA.  相似文献   

10.
These experiments investigated the role of the alpha(2)-adrenoceptors of the basolateral nucleus of the amygdala (BLA) in modulating the retention of inhibitory avoidance (IA). In Experiment 1, male Sprague Dawley rats implanted with bilateral cannulae in the BLA received microinfusions of a selective alpha(2)-adrenoceptor antagonist idazoxan 20 min either before or immediately after training. Retention was tested 48 h later. Idazoxan induced a dose-dependent enhancement of retention performance and was more effective when administered post-training. In Experiment 2, animals received pre- or post-training intra-BLA infusions of a selective alpha(2)-adrenoceptor agonist UK 14,304. The agonist induced a dose-dependent impairment of retention performance and, as with the antagonist treatments, post-training infusions were more effective. These results provide additional evidence that consolidation of inhibitory avoidance memory depends critically on prolonged activation of the noradrenergic system in the BLA and indicate that this modulatory influence is mediated, in part, by pre-synaptic alpha(2)-adrenoceptors.  相似文献   

11.
Noradrenergic activation of the basolateral complex of the amygdala (BLA) modulates the consolidation of memory for many kinds of highly emotionally arousing training tasks. The present experiments investigated whether posttraining noradrenergic activation of the BLA is sufficient to enable memory consolidation of a low-arousing training experience. Sprague-Dawley rats received intra-BLA infusions of norepinephrine, the beta-adrenoceptor antagonist propranolol or saline immediately after either 3 or 10 min of object recognition training. Saline-infused controls exhibited poor 24-h retention when given 3 min of object recognition training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object recognition training produced dose-dependent enhancement of 24-h object recognition memory whereas propranolol administered after 10 min of training produced dose-dependent impairment of memory. These findings provide evidence that posttraining noradrenergic activation of the BLA enhances memory of a low-arousing training experience that would otherwise not induce long-term memory. Thus, regardless of the degree of emotional arousal induced by an experience, noradrenergic activation of the BLA after the experience ensures that it will be better remembered.  相似文献   

12.
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory training. Anisomycin infused into perirhinal or insular cortices blocked long-term (24 h), but not short-term (90 min) object recognition memory. Infusions into the hippocampus or amygdala did not impair object recognition memory. Anisomycin infused into the hippocampus blocked long-term, but not short-term object-in-context recognition memory, whereas infusions administered into the perirhinal cortex, insular cortex, or amygdala did not affect object-in-context recognition memory. These results clearly indicate that distinct regions of the temporal lobe are differentially involved in long-term object and object-in-context recognition memory. Whereas perirhinal and insular cortices are required for consolidation of familiar objects, the hippocampus is necessary for consolidation of contextual information of recognition memory. Altogether, these results suggest that temporal lobe structures are differentially involved in recognition memory consolidation.  相似文献   

13.
Previous evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) in the basolateral amygdala (BLA) are critically involved in the acquisition of aversively based learning tasks. However, the role of NMDARs in the BLA in the consolidation of memory of aversive training has not been well elucidated. In the present study, the NMDAR antagonist AP-5 (1 or 3 microg) was infused into the BLA of male Sprague-Dawley rats immediately before, immediately after, or 6h after training on an inhibitory avoidance task with either a high footshock (HFS; only high dose of AP-5 given) or a low footshock (LFS; both doses of AP-5 given). The 48 h retention of animals given AP-5 (3 microg) immediately before or after HFS training was significantly impaired compared to that of vehicle-controls. In contrast, the retention of rats given AP-5 (3 microg) immediately after LFS training was significantly enhanced compared to that of vehicle-controls. AP-5 (3 microg) infusions administered 6h after training with either an HFS or LFS did not affect retention. These findings suggest that the NMDARs in the BLA are involved in both the acquisition and consolidation of aversive memory. In addition, the AP-5-induced enhancement of memory obtained with LFS training suggests that NMDARs in the BLA are involved in other mechanisms influencing synaptic transmission, in addition to their well-established role in neuroplasticity.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the projection from the basolateral nucleus of the amygdala (Bla) to the IC of adult rats in vivo. Recently, we found that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. In this work, we present experimental data showing that acute intracortical delivery of BDNF (2 microg/2 microl per side) reverses the deficit in CTA memory caused by inhibition of insular cortex protein synthesis due to anisomycin administration (100 microg/microl per side) in male adult Wistar rats. These findings suggest that BDNF is a protein synthesis product essential for neocortical long-term memory storage.  相似文献   

15.
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.  相似文献   

16.
In fear-associated learning paradigms, hippocampal lesions induce memory deficits of recent but not remote memories, while amygdala lesions produce retention deficits irrespective of the age of the memory. In conditioned taste aversion (CTA), non-hippocampal mediated learning paradigm, the insular vortex (IC) has shown to have a crucial role in consolidation and storage of CTA memory. Due to the functional and anatomical similarities to the hippocampus, a time dependent role of the IC in CTA retention cannot be ruled out. To test whether the IC shows a time dependent role in CTA memory retention, male Wistar rats were CTA trained on saccharin 0.1% (LiCl 0.15M, 2% b/w, 40 min after drinking) and lesioned with ibotenic acid (200-300 nL, 5mg/mL) unilaterally into the IC 1 week or bilaterally 1 or 6 weeks after CTA. CTA memory was completely disrupted in both bilateral lesion groups but unaffected in the unilateral lesioned group. The resulting preference was comparable to that of the bilaterally IC lesioned animals exposed to the taste for the first time, proving that in these animals a complete amnesic state was achieved. Bilaterally IC lesioned rats showed normal discrimination between preferred (sucrose 5%) and non-preferred (quinone) tastes. Our data indicates that the involvement of the IC in CTA is not time dependent and that CTA memories are stored in each hemisphere separately.  相似文献   

17.
The basolateral amygdala (BLA) is extensively implicated in emotional learning and memory. The current study investigated the contribution of cholinergic afferents to the BLA from the nucleus basalis magnocellularis in influencing aversive learning and memory. Sprague-Dawley rats were given permanent unilateral phthalic acid (300 ng) lesions of the nucleus basalis magnocellularis and were chronically implanted with cannulas aimed at the ipsilateral BLA. Lesioned rats showed a pronounced inhibitory avoidance task retention deficit that was attenuated by acute posttraining infusions of the muscarinic cholinergic agonist oxotremorine (4 ng) or the indirect agonist physostigmine (1 microg) into the BLA. Continuous multiple-trial inhibitory avoidance training and testing revealed that lesioned rats have a mild acquisition deficit, requiring approximately 1 additional shock to reach the criterion, and a pronounced consolidation deficit as indicated by a shorter latency to enter the shock compartment on the retention test. Because lesioned rats did not differ from sham-operated controls in performance on a spatial water maze task or in shock sensitivity, it is not likely that the memory impairments produced by the phthalic acid lesions are due to any general sensory or motor deficits. These findings suggest that the dense cholinergic projection from the nucleus basalis magnocellularis to the BLA is involved in both the acquisition and the consolidation of the aversive inhibitory avoidance task.  相似文献   

18.
Variation in intracellular calcium concentration regulates the induction of long-term synaptic plasticity and is associated with a variety of memory/retrieval and learning paradigms. Accordingly, impaired calcium mobilization from internal deposits affects synaptic plasticity and cognition in the aged brain. During taste memory formation several proteins are modulated directly or indirectly by calcium, and recent evidence suggests the importance of calcium buffering and the role of intracellular calcium deposits during cognitive processes. Thus, the main goal of this research was to study the consequence of hampering changes in cytoplasmic calcium and inhibiting SERCA activity by BAPTA-AM and thapsigargin treatments, respectively, in the insular cortex during different stages of taste memory formation. Using conditioned taste aversion (CTA), we found differential effects of BAPTA-AM and thapsigargin infusions before and after gustatory stimulation, as well as during taste aversive memory consolidation; BAPTA-AM, but not thapsigargin, attenuates acquisition and/or consolidation of CTA, but neither compound affects taste aversive memory retrieval. These results point to the importance of intracellular calcium dynamics in the insular cortex during different stages of taste aversive memory formation.  相似文献   

19.
Animals develop robust learning and long lasting taste aversion memory once they experience a new taste that is followed by visceral discomfort. A large body of literature has supported the hypothesis that basolateral amygdala (BLA) plays a critical role in the acquisition and extinction of such conditioned taste aversions (CTA). Despite the evidence that BLA is crucially engaged during CTA training, it is unclear how BLA neural activity represents the conditioned tastes. Here, we incorporated a modified behavioral paradigm suitable for single unit study, one which utilizes a sequence of pulsed saccharin and water infusion via intraoral cannulae. After conditioning, we investigated BLA unit activity while animals experience the conditioned taste (saccharin). Behavioral tests of taste reactivity confirmed that the utilized training procedure produced reliable acquisition and expression of the aversion throughout test sessions. When neural activity was compared between saccharin and water trials, half of the recorded BLA units (77/149) showed differential activity according to the types of solution. 76% of those cells (29/38) in the conditioned group showed suppressed activity, while only 44% of taste reactive cells (17/39) in controls showed suppressed activity during saccharin trials (relative to water trials). In addition, the overall excitability of BLA units was increased as shown by altered characteristics of burst activity after conditioning. The changes in BLA activity as a consequence of CTA were maintained throughout test sessions, consistent with the behavioral study. The current study suggests that the neuronal activity evoked by a sweet taste is altered as a consequence of CTA learning, and that the overall change might be related to the learning induced negative affect.  相似文献   

20.
Learning tasks are typically thought to be either hippocampal-dependent (impaired by hippocampal lesions) or hippocampal-independent (indifferent to hippocampal lesions). Here, we show that conditioned taste aversion (CTA) learning fits into neither of these categories. Rats were trained to avoid two taste stimuli, one novel and one familiar. Muscimol infused through surgically implanted intracranial cannulae temporarily inactivated the dorsal hippocampus during familiarization, subsequent CTA training, or both. As shown previously, hippocampal inactivation during familiarization enhanced the effect of that familiarization on learning (i.e., hippocampal inactivation enhanced latent inhibition of CTA); more novel and surprising, however, was the finding that hippocampal inactivation during training sessions strongly enhanced CTA learning itself. These phenomena were not caused by specific aspects of our infusion technique--muscimol infusions into the hippocampus during familiarization sessions did not cause CTAs, muscimol infusions into gustatory cortex caused the expected attenuation of CTA, and hippocampal inactivation caused the expected attenuation of spatial learning. Thus, we suggest that hippocampal memory processes interfere with the specific learning mechanisms underlying CTA, and more generally that multiple memory systems do not operate independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号