首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional neuroimaging studies in which the cortical organization for semantic knowledge has been addressed have revealed interesting dissociations in the recognition of different object categories, such as faces, natural objects, and manufactured objects. The present paper critically reviews these studies and performs a meta-analysis of stereotactic coordinates to determine whether category membership predicts patterns of brain activation across different studies. This meta-analysis revealed that, in the ventral temporal cortex, recognition of manufactured objects activates more medial aspects of the fusiform gyrus, as compared with natural object or face recognition. Face recognition activates more inferior aspects of the ventral temporal cortex, as compared with manufactured object recognition. The recognition task used—viewing, matching, or naming—also predicted brain activation patterns. Specifically, matching tasks recruit more inferior occipital regions than do either naming or viewing tasks, whereas naming tasks recruit more anterior ventral temporal sites than do either viewing or matching tasks. These findings indicate that the cognitive demands of a particular recognition task are as predictive of cortical activation patterns as is category membership.  相似文献   

2.
3.
Previous studies examining explicit semantic processing have consistently shown activation of the left inferior frontal gyrus (IFG). In contrast, implicit semantic processing tasks have shown activation in posterior areas including the superior temporal gyrus (STG) and the middle temporal gyrus (MTG) with less consistent activation in the IFG. These results raise the question whether the functional role of the IFG is related to those processes needed to make a semantic decision or to processes involved in the extraction and analysis of meaning. This study examined neural activation patterns during a semantic judgment task requiring overt semantic analysis, and then compared these activation patterns to previously obtained results using the same semantically related and unrelated word pairs in a lexical decision task which required only implicit semantic processing (Rissman, J., Eliassen, J. C., & Blumstein, S. E. (2003). An event-related fMRI investigation of implicit semantic priming. Journal of Cognitive Neuroscience, 15, 1160-1175). The behavioral results demonstrated that the tasks were equivalent in difficulty. fMRI results indicated that the IFG and STG bilaterally showed greater activation for semantically unrelated than related word pairs across the two tasks. Comparison of the two task types across conditions revealed greater activation for the semantic judgment task only in the STG bilaterally and not in the IFG. These results suggest that the pre-frontal cortex is recruited similarly in the service of both the lexical decision and semantic judgment tasks. The increased activation in the STG in the semantic judgment task reflects the greater depth of semantic processing required in this task and indicates that the STG is not simply a passive store of lexical-semantic information but is involved in the active retrieval of this information.  相似文献   

4.
Human occipitotemporal cortex (OTC) is critically involved in object recognition, but the functional organization of this brain region is controversial. In the present study, functional magnetic resonance imaging (fMRI) signal changes were recorded in humans during an animal-matching task that parametrically varied degree of structural (i.e., shape) similarity among the items. fMRI signal in the midto anterior-fusiform gyrus increased as animals overlapped more in terms of structure and as reaction time increased. In contrast, relatively more posterior aspects of the fusiform gyrus and inferior occipital cortex showed greater fMRI signal when the animals overlapped less in terms of structure. A similar organization emerged when three-dimensional geometric shapes were matched, indicating that OTC is differentially tuned to varying degrees of overlap in object structure, regardless of taxonomic category. We discuss how the present findings fit in with current functional neuroanatomical approaches to object recognition.  相似文献   

5.
In the present object recognition study, we examined the relationship between brain activation and four behavioral measures: error rate, reaction time, observer sensitivity, and response bias. Subjects perceptually matched object pairs in which structural similarity (SS), an index of structural differentiation, and exposure duration (DUR), an index of task difficulty, were manipulated. The SS manipulation affected the fMRI signal in the left anterior fusiform and parietal cortices, which in turn reflected a bias to respond same. Conversely, an SS-modulated fMRI signal in the right middle frontal gyrus reflected a bias to respond different. The DUR manipulation affected the fMRI signal in occipital and posterior fusiform regions, which in turn reflected greater sensitivity, longer reaction times, and greater accuracy. These findings demonstrate that the regions most strongly implicated in processing object shape (SS-modulated regions) are associated with response bias, whereas regions that are not directly involved in shape processing are associated with successful recognition performance.  相似文献   

6.
Previous functional magnetic resonance imaging (fMRI) studies have investigated the role of phonological processing by utilizing nonword rhyming decision tasks (e.g., Pugh et al., 1996). Although such tasks clearly engage phonological components of visual word recognition, it is clear that decision tasks are more cognitively involved than the simple overt naming tasks, which more closely map onto normal reading behavior. Our research aim for this study was to examine the advantages of overt naming tasks for fMRI studies of word recognition processes. Process models are presented to highlight the similarities and differences between two cognitive tasks that are used in the word recognition literature, pseudohomophone naming (e.g., pronounce BRANE) and rhyming decision (e.g., do LEAT and JEAT rhyme?). An fMRI study identified several differences in cortical activation associated with the differences observed in the process models. Specifically, the results show that the overt naming task involved the insular cortex and inferior frontal gyrus, whereas the rhyming decision task engaged the temporal-parietal regions. It is argued that future fMRI research examining the neuroanatomical components of basic visual word recognition utilize overt naming tasks.  相似文献   

7.
8.
Indeterminate art invokes a perceptual dilemma in which apparently detailed and vivid images resist identification. We used event-related fMRI to study visual perception of representational, indeterminate and abstract paintings. We hypothesized increased activation along a gradient of posterior-to-anterior ventral visual areas with increased object resolution, and postulated that object resolution would be associated with visual imagery. Behaviorally, subjects were faster to recognize familiar objects in representational than in both indeterminate and abstract paintings. We found activation within a distributed cortical network that includes visual, parietal, limbic and prefrontal regions. Representational paintings, which depict scenes cluttered with familiar objects, evoked stronger activation than indeterminate and abstract paintings in higher-tier visual areas. Perception of scrambled paintings was associated with imagery-related activation in the precuneus and prefrontal cortex. Finally, representational paintings evoked stronger activation than indeterminate paintings in the temporoparietal junction. Our results suggest that perception of familiar content in art works is mediated by object recognition, memory recall and mental imagery, cognitive processes that evoke activation within a distributed cortical network.  相似文献   

9.
Although a few developmental fMRI studies have shed some light on the neurological development of either object or spatial processing we still know very little about the development of the ‘what’ and ‘where’ processing systems. The present study is the first to address this issue by comparing, concurrently and within the same behavioral paradigm, patterns of functional activation for face processing and location processing in 12 children (10–12 years old) and 16 adults. For both tasks this study found a developmental shift from a more distributed pattern of activation in children to a more focused pattern of activation in adults. Furthermore, the type of developmental redistribution of activation in children varied depending on the task. The present findings have important implications for theories of visuospatial development. They suggest that the neural systems involved in face and location processing may undergo development and fine‐tuning well into late childhood.  相似文献   

10.
We explored developmental changes in neural substrates for face processing, using fMRI. Children and adults performed a perceptual-matching task with upright and inverted face and animal stimuli. Behaviorally, inversion disrupted face processing more than animal processing for adults and older children. In line with this behavioral pattern, the left middle occipital gyrus showed a stronger face than animal inversion effect in adults. Moreover, a superior aspect of this region showed a greater face inversion effect in older than in younger children, indicating a developmental change in the processing of inverted faces. The visual regions recruited for inverted face processing in adults also overlapped more with brain regions involved in the viewing of upright objects than with regions involved in the viewing of upright faces in an independent localizer task. Hence, when faces are inverted, adults recruit regions normally engaged for recognizing objects, possibly pointing to a role for the featural processing of inverted faces.  相似文献   

11.
The retrieval of temporal-order versus spatial-location information was investigated using fMRI. The primary finding in the hippocampus proper, seen in region of interest analyses, was an increase in BOLD signal intensity for temporal retrieval, and a decrease in signal intensity for spatial retrieval, relative to baseline. The negative BOLD signal change with spatial memory processing, while unexpected, is consistent with the recent fMRI literature indicating decreased BOLD can be associated with neuronal activation, and it is argued that the deactivation observed here may facilitate spatial performance. Spatial-location judgments also yielded a stronger (positive) response in the right midfrontal gyrus, while temporal-order judgments (autobiographic condition only) showed greater activity in the left superior temporal gyrus, suggesting greater working memory demands and greater semantization for each judgment type, respectively. Finally, all conditions activated the left midfrontal gyrus, although autobiographic memories showed additional activity in the medial frontal gyrus.  相似文献   

12.
In the present study, we examined whether and how brief viewing of positive and negative images influences subsequent understanding of solutions to insight problems. For each trial, participants were first presented with an insight problem and then briefly viewed a task-irrelevant positive, negative, or neutral image (660 ms), which was followed by the solution to the problem. In our behavioral study (Study 1), participants were faster to report that they understood the solutions following positive images, and were slower to report it following negative images. A subsequent fMRI study (Study 2) revealed enhanced activity in the angular gyrus and medial prefrontal cortex (MPFC) while viewing solutions following positive, as compared with negative, images. In addition, greater activation of the angular gyrus was associated with more rapid understanding of the solutions. These results suggest that brief viewing of positive images enhances activity in the angular gyrus and MPFC, which results in facilitation of understanding solutions to insight problems.  相似文献   

13.
行为学研究表明归类过程中的反应具有认知风格上的不同,但未有研究明确探讨归类过程的神经活动是否也受认知风格的影响。本研究通过双重认知风格分型任务筛选出分析型和整体型被试,以探讨归类过程中二者之间是否表现出神经活动的差异。实验任务要求被试从两个待选物中选出与目标物属于同一类别的一个。同时,采用fMRI技术扫描并记录他们完成任务时的BOLD信号。结果发现,与基线任务相比,整体型和分析型个体均激活了额-枕网络的一些脑区,包括额下回、楔前叶、枕中回等,表明不同认知风格个体在任务中可能共享与工作记忆等相关的脑区。另外,与分析型个体相比,整体型个体在右额下回、右旁海马回呈现更广泛的特异性激活,提示,认知风格可以影响归类过程中的脑活动,而整体型个体大脑右半球更强烈的活动表明这一类型认知风格个体在归类时更依赖于远距离的语义联结。  相似文献   

14.
We examined the role of motor affordances of objects for working memory retention processes. Three experiments are reported in which participants passively viewed pictures of real world objects or had to retain the objects in working memory for a comparison with an S2 stimulus. Brain activation was recorded by means of functional magnetic resonance imaging (fMRI). Retaining information about objects for which hand actions could easily be retrieved (manipulable objects) in working memory activated the hand region of the ventral premotor cortex (PMC) contralateral to the dominant hand. Conversely, nonmanipulable objects activated the left inferior frontal gyrus. This suggests that working memory for objects with motor affordance is based on motor programs associated with their use. An additional study revealed that motor program activation can be modulated by task demands: Holding manipulable objects in working memory for an upcoming motor comparison task was associated with left ventral PMC activation. However, retaining the same objects for a subsequent size comparison task led to activation in posterior brain regions. This suggests that the activation of hand motor programs are under top down control. By this they can flexibly be adapted to various task demands. It is argued that hand motor programs may serve a similar working memory function as speech motor programs for verbalizable working memory contents, and that the premotor system mediates the temporal integration of motor representations with other task-relevant representations in support of goal oriented behavior.  相似文献   

15.
Three experiments are reported in which observers judged the three-dimensional (3-D) structures of virtual or real objects defined by various combinations of texture, motion, and binocular disparity under a wide variety of conditions. The tasks employed in these studies involved adjusting the depth of an object to match its width, adjusting the planes of a dihedral angle so that they appeared orthogonal, and adjusting the shape of an object so that it appeared to match another at a different viewing distance. The results obtained on all of these tasks revealed large constant errors and large individual differences among observers. There were also systematic failures of constancy over changes in viewing distance, orientation, or response task. When considered in conjunction with other, similar reports in the literature, these findings provide strong evidence that human observers do not have accurate perceptions of 3-D metric structure.  相似文献   

16.
本研究筛选了11项采用功能性磁共振成像技术探究言语自闭症人群词义加工的研究, 探讨了该人群与典型人群脑激活模式的差异是否具有跨研究的稳定性。结果表明, 差异的脑激活模式稳定存在, 且表现为主要涉及左额上回的典型脑区激活不足。该结果为言语ASD人群语言加工的神经机制提供了来自词义加工的跨研究激活证据, 在明确“减弱的额叶激活”这一稳定差异表现的基础上, 强调了针对不同语言加工任务开展元分析研究的必要性。  相似文献   

17.
Individuals diagnosed with major depressive disorder (MDD) often ruminate about their depression and their life situations, impairing their concentration and performance on daily tasks. We examined whether rumination might be due to a deficit in the ability to expel negative information from short-term memory (STM), and fMRI was used to examine the neural structures involved in this ability. MDD and healthy control (HC) participants were tested using a directed-forgetting procedure in a short-term item recognition task. As predicted, MDD participants had more difficulty than did HCs in expelling negative, but not positive, words from STM. Overall, the neural networks involved in directed forgetting were similar for both groups, but the MDDs exhibited more spatial variability in activation in the left inferior frontal gyrus (a region critical for inhibiting irrelevant information), which may contribute to their relative inability to inhibit negative information.  相似文献   

18.
Driving is a cognitively challenging task, and many individuals with autism spectrum disorder (ASD) or with attention-deficit/hyperactivity disorder (ADHD) struggle to drive safely and effectively. Previous evidence suggests that core neuropsychological deficits in executive functioning (EF) and theory of mind (ToM) may impact driving in ASD and ADHD. This functional magnetic resonance imaging (fMRI) study compares the brain mechanisms underlying ToM and EF during a hazard perception driving task. Forty-six licensed drivers (14 ASD, 17 ADHD, 15 typically developing (TD)), ages 16–27 years, viewed a driving scenario in the MRI scanner and were instructed to respond to driving hazards that were either “social” (contained a human component such as a pedestrian) or “nonsocial” (physical objects such as a barrel). All groups of participants recruited regions part of the “social brain” (anterior insula, angular gyrus, right middle occipital gyrus, right cuneus/precuneus, and right inferior frontal gyrus) when processing social hazards, and regions associated with motor planning and object recognition (postcentral gyrus, precentral gyrus, and supplementary motor area) when processing nonsocial hazards. While there were no group differences in brain activation during the driving task, years licensed was predictive of greater prefrontal and temporal activation to social hazards in all participants. Findings of the current study suggest that high-functioning ASD and ADHD licensed drivers may be utilizing similar cognitive resources as TD controls for decisions related to driving-related hazard detection.  相似文献   

19.
Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral images were intermittently presented as task-irrelevant distracters (novels). As previously shown for adults, when the adolescents responded to the task-relevant targets, activation increased in the dorsal attention-executive system including the anterior middle frontal gyrus (aMFG), dorsal anterior cingulate (ACG), posterior cingulate (PCG), insula, and supramarginal gyrus (SMG). Unlike adults, however, the adolescents exhibited strong activation to the emotional distracter images not only in the ventromedial prefrontal cortex (VmPFC), but also in the posterior middle frontal gyrus (pMFG) and in the parietal cortex. Those subjects who had stronger VmPFC activation to emotional distraction also had reduced activation in the aMFG during target detection, suggesting that emotional information may interfere with executive processing in these adolescents. In contrast, pMFG and PCG activation to emotional distracters was positively correlated with aMFG activation to targets, indicating a different role of these regions from the VmPFC. The pattern of activation to task-irrelevant emotional distraction suggests a possible immaturity of brain function in cognitive control over emotional distraction in adolescents.  相似文献   

20.
Neural correlates of successful and unsuccessful verbal memory encoding   总被引:5,自引:0,他引:5  
Recent neuroimaging studies suggest that episodic memory encoding involves a network of neocortical structures which may act interdependently with medial temporal lobe (mTL) structures to promote the formation of durable memories, and that activation in certain structures is modulated according to task performance. Functional magnetic resonance imaging (fMRI) was used to determine the neural structures recruited during a verbal episodic encoding task and to examine the relationship between activation during encoding and subsequent recognition memory performance across subjects. Our results show performance-correlated activation during encoding both in neocortical and medial temporal structures. Neocortical activations associated with later successful and unsuccessful recognition memory were found to differ not only in magnitude, but also in hemispheric laterality. These performance-related hemispheric effects, which have not been previously reported, may correspond to between-subject differences in encoding strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号