首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Effect size reporting and interpreting practices have been extensively recommended in academic journals when primary outcomes of all empirical studies have been analyzed. This article presents an alternative approach to constructing confidence intervals of the weighted eta-squared effect size within the context of one-way heteroscedastic ANOVA models. It is shown that the proposed interval procedure has advantages over an existing method in its theoretical justification, computational simplicity, and numerical performance. For design planning, the corresponding sample size procedures for precise interval estimation of the weighted eta-squared association measure are also delineated. Specifically, the developed formulas compute the necessary sample sizes with respect to the considerations of expected confidence interval width and tolerance probability of interval width within a designated value. Supplementary computer programs are provided to aid the implementation of the suggested techniques in practical applications of ANOVA designs when the assumption of homogeneous variances is not tenable.  相似文献   

2.
The point-biserial correlation is a commonly used measure of effect size in two-group designs. New estimators of point-biserial correlation are derived from different forms of a standardized mean difference. Point-biserial correlations are defined for designs with either fixed or random group sample sizes and can accommodate unequal variances. Confidence intervals and standard errors for the point-biserial correlation estimators are derived from the sampling distributions for pooled-variance and separate-variance versions of a standardized mean difference. The proposed point-biserial confidence intervals can be used to conduct directional two-sided tests, equivalence tests, directional non-equivalence tests, and non-inferiority tests. A confidence interval for an average point-biserial correlation in meta-analysis applications performs substantially better than the currently used methods. Sample size formulas for estimating a point-biserial correlation with desired precision and testing a point-biserial correlation with desired power are proposed. R functions are provided that can be used to compute the proposed confidence intervals and sample size formulas.  相似文献   

3.
A framework for comparing normal population means in the presence of heteroscedasticity and outliers is provided. A single number called the weighted effect size summarizes the differences in population means after weighting each according to the difficulty of estimating their respective means, whether the difficulty is due to unknown population variances, unequal sample sizes or the presence of outliers. For an ANOVA weighted for unequal variances, we find interval estimates for the weighted effect size. In addition, the weighted effect size is shown to be a monotone function of a suitably defined weighted coefficient of determination, which means that interval estimates of the former are readily transformed into interval estimates of the latter. Extensive simulations demonstrate the accuracy of the nominal 95% coverage of these intervals for a wide range of parameters.  相似文献   

4.
Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software.  相似文献   

5.
This article presents confidence interval methods for improving on the standard F tests in the balanced, completely between-subjects, fixed-effects analysis of variance. Exact confidence intervals for omnibus effect size measures, such as or and the root-mean-square standardized effect, provide all the information in the traditional hypothesis test and more. They allow one to test simultaneously whether overall effects are (a) zero (the traditional test), (b) trivial (do not exceed some small value), or (c) nontrivial (definitely exceed some minimal level). For situations in which single-degree-of-freedom contrasts are of primary interest, exact confidence interval methods for contrast effect size measures such as the contrast correlation are also provided.  相似文献   

6.
We argue that to best comprehend many data sets, plotting judiciously selected sample statistics with associated confidence intervals can usefully supplement, or even replace, standard hypothesis-testing procedures. We note that most social science statistics textbooks limit discussion of confidence intervals to their use in between-subject designs. Our central purpose in this article is to describe how to compute an analogous confidence interval that can be used in within-subject designs. This confidence interval rests on the reasoning that because between-subject variance typically plays no role in statistical analyses of within-subject designs, it can legitimately be ignored; hence, an appropriate confidence interval can be based on the standard within-subject error term—that is, on the variability due to the subject × condition interaction. Computation of such a confidence interval is simple and is embodied in Equation 2 on p. 482 of this article. This confidence interval has two useful properties. First, it is based on the same error term as is the corresponding analysis of variance, and hence leads to comparable conclusions. Second, it is related by a known factor (√2) to a confidence interval of the difference between sample means; accordingly, it can be used to infer the faith one can put in some pattern of sample means as a reflection of the underlying pattern of population means. These two properties correspond to analogous properties of the more widely used between-subject confidence interval.  相似文献   

7.
The use of effect sizes and associated confidence intervals in all empirical research has been strongly emphasized by journal publication guidelines. To help advance theory and practice in the social sciences, this article describes an improved procedure for constructing confidence intervals of the standardized mean difference effect size between two independent normal populations with unknown and possibly unequal variances. The presented approach has advantages over the existing formula in both theoretical justification and computational simplicity. In addition, simulation results show that the suggested one- and two-sided confidence intervals are more accurate in achieving the nominal coverage probability. The proposed estimation method provides a feasible alternative to the most commonly used measure of Cohen’s d and the corresponding interval procedure when the assumption of homogeneous variances is not tenable. To further improve the potential applicability of the suggested methodology, the sample size procedures for precise interval estimation of the standardized mean difference are also delineated. The desired precision of a confidence interval is assessed with respect to the control of expected width and to the assurance probability of interval width within a designated value. Supplementary computer programs are developed to aid in the usefulness and implementation of the introduced techniques.  相似文献   

8.
Welch’s (Biometrika 29: 350–362, 1938) procedure has emerged as a robust alternative to the Student’s t test for comparing the means of two normal populations with unknown and possibly unequal variances. To facilitate the advocated statistical practice of confidence intervals and further improve the potential applicability of Welch’s procedure, in the present article, we consider exact approaches to optimize sample size determinations for precise interval estimation of the difference between two means under various allocation and cost considerations. The desired precision of a confidence interval is assessed with respect to the control of expected half-width, and to the assurance probability of interval half-width within a designated value. Furthermore, the design schemes in terms of participant allocation and cost constraints include (a) giving the ratio of group sizes, (b) specifying one sample size, (c) attaining maximum precision performance for a fixed cost, and (d) meeting a specified precision level for the least cost. The proposed methods provide useful alternatives to the conventional sample size procedures. Also, the developed programs expand the degree of generality for the existing statistical software packages and can be accessed at brm.psychonomic-journals.org/content/ supplemental.  相似文献   

9.
An approach to sample size planning for multiple regression is presented that emphasizes accuracy in parameter estimation (AIPE). The AIPE approach yields precise estimates of population parameters by providing necessary sample sizes in order for the likely widths of confidence intervals to be sufficiently narrow. One AIPE method yields a sample size such that the expected width of the confidence interval around the standardized population regression coefficient is equal to the width specified. An enhanced formulation ensures, with some stipulated probability, that the width of the confidence interval will be no larger than the width specified. Issues involving standardized regression coefficients and random predictors are discussed, as are the philosophical differences between AIPE and the power analytic approaches to sample size planning.  相似文献   

10.
The difference between two proportions, referred to as a risk difference, is a useful measure of effect size in studies where the response variable is dichotomous. Confidence interval methods based on a varying coefficient model are proposed for combining and comparing risk differences from multi‐study between‐subjects or within‐subjects designs. The proposed methods are new alternatives to the popular constant coefficient and random coefficient methods. The proposed varying coefficient methods do not require the constant coefficient assumption of effect size homogeneity, nor do they require the random coefficient assumption that the risk differences from the selected studies represent a random sample from a normally distributed superpopulation of risk differences. The proposed varying coefficient methods are shown to have excellent finite‐sample performance characteristics under realistic conditions.  相似文献   

11.
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account the uncertainty due to the fact that the heterogeneity variance (tau2) and the within-study variances have to be estimated, leading to CIs that are too narrow with the consequence that the actual coverage probability is smaller than the nominal confidence level. In this article, the performances of 3 alternatives to the standard CI procedure are examined under a random-effects model and 8 different tau2 estimators to estimate the weights: the t distribution CI, the weighted variance CI (with an improved variance), and the quantile approximation method (recently proposed). The results of a Monte Carlo simulation showed that the weighted variance CI outperformed the other methods regardless of the tau2 estimator, the value of tau2, the number of studies, and the sample size.  相似文献   

12.
The use of hierarchical data (also called multilevel data or clustered data) is common in behavioural and psychological research when data of lower-level units (e.g., students, clients, repeated measures) are nested within clusters or higher-level units (e.g., classes, hospitals, individuals). Over the past 25 years we have seen great advances in methods for computing the sample sizes needed to obtain the desired statistical properties for such data in experimental evaluations. The present research provides closed-form and iterative formulas for sample size determination that can be used to ensure the desired width of confidence intervals for hierarchical data. Formulas are provided for a four-level hierarchical linear model that assumes slope variances and inclusion of covariates under both balanced and unbalanced designs. In addition, we address several mathematical properties relating to sample size determination for hierarchical data via the standard errors of experimental effect estimates. These include the relative impact of several indices (e.g., random intercept or slope variance at each level) on standard errors, asymptotic standard errors, minimum required values at the highest level, and generalized expressions of standard errors for designs with any-level randomization under any number of levels. In particular, information on the minimum required values will help researchers to minimize the risk of conducting experiments that are statistically unlikely to show the presence of an experimental effect.  相似文献   

13.
叶宝娟  温忠麟 《心理科学》2013,36(1):216-223
多数情况下,α系数可以用来评价测验信度。诸多研究建议,在报告测验信度的时候应当包括其置信区间。通过蒙特卡洛模拟研究,比较了7种α系数区间估计方法,包括Fisher法、Bonett-02法、Bonett-10法、精确Koning-Franses法、渐近ID法、渐近Koning-Franses法和ADF法。结果发现Bonett-10法和精确Koning-Franses法较好,它们的结果相差很小。这两种方法都比较简单,只需要样本的α值、测验题数、被试人数及F临界值,通过简单的运算便可得到α系数的置信区间。  相似文献   

14.
In this study, we analyzed the validity of the conventional 80% power. The minimal sample size and power needed to guarantee non-overlapping (1-alpha)% confidence intervals for population means were calculated. Several simulations indicate that the minimal power for two means (m = 2) to have non-overlapping CIs is .80, for (1-alpha) set to 95%. The minimal power becomes .86 for 99% CIs and .75 for 90% CIs. When multiple means are considered, the required minimal power increases considerably. This increase is even higher when the population means do not increase monotonically. Therefore, the often adopted criterion of a minimal power equal to .80 is not always adequate. Hence, to guarantee that the limits of the CIs do not overlap, most situations require a direct calculation of the minimum number of observations that should enter in a study.  相似文献   

15.
The currently available distribution-free confidence interval for a difference of medians in a within-subjects design requires an unrealistic assumption of identical distribution shapes. A confidence interval for a general linear function of medians is proposed for within-subjects designs that do not assume identical distribution shapes. The proposed method can be combined with a method for linear functions of independent medians to provide a confidence interval for a linear function of medians in mixed designs. Simulation results show that the proposed methods have good small-sample properties under a wide range of conditions. The proposed methods are illustrated with examples, and R functions that implement the new methods are provided.  相似文献   

16.
When the distribution of the response variable is skewed, the population median may be a more meaningful measure of centrality than the population mean, and when the population distribution of the response variable has heavy tails, the sample median may be a more efficient estimator of centrality than the sample mean. The authors propose a confidence interval for a general linear function of population medians. Linear functions have many important special cases including pairwise comparisons, main effects, interaction effects, simple main effects, curvature, and slope. The confidence interval can be used to test 2-sided directional hypotheses and finite interval hypotheses. Sample size formulas are given for both interval estimation and hypothesis testing problems.  相似文献   

17.
摘要:引入了三种可以估计认知诊断属性分类一致性信度置信区间的方法:Bootstrap法、平行测验法和平行测验配对法。用模拟研究验证和比较了这三种方法的表现,结果发现,平行测验法和Bootstrap法在被试量比较少、题目数量比较少的情况下,估计的标准误和置信区间较接近,但是随着被试量的增加,Bootstrap法的估计精度提高较快,在被试量大和题目数量较多时基本接近平行测验配对法的结果。Bootstrap法的所需时间最少,平行测验配对法计算过程复杂且用时较长,推荐用Bootstrap法估计认知诊断属性分类一致性信度的置信区间。  相似文献   

18.
Valid use of the traditional independent samples ANOVA procedure requires that the population variances are equal. Previous research has investigated whether variance homogeneity tests, such as Levene's test, are satisfactory as gatekeepers for identifying when to use or not to use the ANOVA procedure. This research focuses on a novel homogeneity of variance test that incorporates an equivalence testing approach. Instead of testing the null hypothesis that the variances are equal against an alternative hypothesis that the variances are not equal, the equivalence-based test evaluates the null hypothesis that the difference in the variances falls outside or on the border of a predetermined interval against an alternative hypothesis that the difference in the variances falls within the predetermined interval. Thus, with the equivalence-based procedure, the alternative hypothesis is aligned with the research hypothesis (variance equality). A simulation study demonstrated that the equivalence-based test of population variance homogeneity is a better gatekeeper for the ANOVA than traditional homogeneity of variance tests.  相似文献   

19.
Methods of sample size planning are developed from the accuracy in parameter approach in the multiple regression context in order to obtain a sufficiently narrow confidence interval for the population squared multiple correlation coefficient when regressors are random. Approximate and exact methods are developed that provide necessary sample size so that the expected width of the confidence interval will be sufficiently narrow. Modifications of these methods are then developed so that necessary sample size will lead to sufficiently narrow confidence intervals with no less than some desired degree of assurance. Computer routines have been developed and are included within the MBESS R package so that the methods discussed in the article can be implemented. The methods and computer routines are demonstrated using an empirical example linking innovation in the health services industry with previous innovation, personality factors, and group climate characteristics.  相似文献   

20.
The linear discriminant function and the generalized distance function, two special cases of discriminant technique, require multivariate normality and homogeneous variance-covariance matrices, and hence utilize only mean differences among groups. The more general methods can also utilize differences in variances and/or covariances. Tables are given showing the discriminatory value of differences in means, variances, and intercorrelations, taken singly. Equations which utilize all such differences are given for the normal multivariate distribution.The Psychological Corporation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号