首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent physiological studies (von der Heydt & Peterhans, 1989) suggest that the orientation of subjective contours is encoded very early in the visual system (V2 in monkey). This result is seemingly at odds with existing psychophysical data which suggest that the detection of subjective contours involves selective attention. It is argued that certain subjective contours are registered in a reflexive (bottom-up) manner by the visual system but that selective attention may be needed to gain access to this representation. To assess this suggestion, a visual-search task was used in which subjects were to detect the presence of a horizontal (vertical) subjective contour (defined by offset gratings) in a variable number of vertical (horizontal) subjective contours (also defined by offset gratings). When there were no competing organizations within the display, detection was indeed independent of the number of nontarget distractors, that is, selective attention was unnecessary. In a second experiment, we found that a curved form (a crescent defined by subjective contours) was easier to detect in a background of vertical bars (also defined by subjective contours) than vice versa, namely, a search asymmetry paralleling those found by Treisman and Gormican (1988). A final experiment showed that when the horizontal and vertical bars of the first experiment formed textured regions, they could be discriminated at very brief display durations (30-120 msec). However, when the line terminations aligned along the subjective contour were tapered rather than abrupt, discrimination dropped off with the degree of tapering. The latter result is consistent with the assumption that the registration of subjective contours in V2 involves the integration of responses from aligned, end-stopped cells found in V1 (von der Heydt & Peterhans, 1989).  相似文献   

2.
Three experiments were conducted to refine our understanding of the mechanisms that encode subjective contours. In Experiment 1, discrimination thresholds (stimulus onset asynchronies [SOAs] yielding 81% correct) were measured in a backward masking paradigm for subjective contours defined by offset gratings. For large apertures, thresholds increased as carrier frequency increased. For the smallest aperture, thresholds were a U-shaped function of carrier frequency. Experiment 2 showed that these threshold results were generally consistent with the rated strength of the subjective contours. Experiment 3 showed that detection thresholds (SOAs yielding 81% correct) again increased with carrier spatial frequency, increased for obliquely oriented carriers, and, for a particular frequency and orientation of the carrier, were lower when the subjective contour was orthogonal to the carrier. All of these results are well explained by a two-stage process in which a second-layer filter integrates the responses of end-stopped mechanisms to the terminators defining the subjective contour. In the model, the end-stopped mechanisms have low-pass sensitivity to carrier spatial frequency, and the sizes of the second-layer filters are proportional to the scale of the end-stopped mechanisms from which they draw their input.  相似文献   

3.
4.
Continuous changes in spatially separated figures can evoke perception of subjective contours and figures in physically homogeneous space between them. This occurs when all of the interruptions in the objectively present patterns (inducing elements) can be seen as caused by a unitary figure partly occluding them. Two experiments demonstrated and explored this phenomenon. In both, displays were presented to subjects under three conditions. In one condition, stationary inducing elements were shown as they would be interrupted by a figure rotating in front of them. In another condition, the background and inducing elements rotated, with interruptions occurring as if a stationary figure were in front. In a third condition, observers were shown 10 static views taken from the figure-rotation sequence for each display. Subjects consistently perceived unitary central figures with well-defined forms and clear edges from pattern changes given by figure movement and background movement. As with static subjective figures, kinetic subjective figures appear in front of, partly occluding, the inducing elements. These percepts form rapidly, and they depend upon temporal relations rather than upon information present in momentary views. Subjects occasionally reported subjective edges or a central figure in the stationary displays in Experiment 1, but not at all in Experiment 2, in which guessing tendencies were reduced by more specific instructions. The existence of kinetic subjective contours suggests that the visual system readily utilizes relationships among occlusion events separated in space and time. The minimum conditions for contour perception require neither information all along an edge nor simultaneous specification of the edge at two or more places.  相似文献   

5.
Kinetic subjective contours   总被引:2,自引:0,他引:2  
  相似文献   

6.
Ten Ss rated perceived depth and contour clarity of figures containing binocularly disparate subjective contours. There was no tendency for stereoscopic depth cues to enhance the perceived clarity of subjective contours. Disparity cues that were incompatible with monocular depth cues reduced the depth sensation but did not affect contour clarity. Although subjective contours can be perceived stereoscopically, they are seen in less depth than real contours with the same degree of horizontal disparity.  相似文献   

7.
Stationary lines appear to move from left to right following exposure to lines moving from right to left. This aftereffect, which normally is generated by exposure to moving edges that are defined in terms of local luminance discontinuity, can also be induced by adaptation to displays containing subjective contours. In both cases, stereodeficient observers demonstrated reduced interocular transfer of the aftereffect relative to stereonormal observers. Since interocular transfer of the motion aftereffect entails binocular function within the visual system, these results suggest that the perception of subjective contours depends on excitation of neural feature detectors rather than simply on cognitive inference.  相似文献   

8.
Two theories of subjective contours are distinguished according to the interrelationship of subjective contours and subjective brightness effects. In one view, subjective contours are illusory brightness gradients generated from grouped local brightness effects. In another view, subjective contours are the edges of subjective forms created on the basis of gestalt factors; subjective brightness is a secondary consequence of form perception. Two experiments which use rating scales to separate judgments of subjective contour and subjective brightness are presented. The first shows that subjects may judge contour to be strong when there is no subjective brightness gradient. In the second, gestalt grouping factors are shown to be more important than factors which should influence brightness according to local effects theories. Both experiments support the view that subjective brightness occurs through interactions at the level of form perception.  相似文献   

9.
10.
Kavsek M  Yonas A 《Perception》2006,35(2):215-227
We investigated whether 4-month-old infants are capable of perceiving illusory contours produced by the Kanizsa-square display, first introduced by Prazdny (1983, Perception & Psychophysics 34 403-404), which tests whether a viewer perceives the illusory contour in the absence of brightness contrast (illusory brightness). Because the illusory square appears to move across the computer screen and infants are attracted to motion, this display holds their interest. In experiment 1, 4-month-old infants were tested for their ability to distinguish between a continuously moving illusory square and a continuously moving control display in which the pacman elements were rotated so that the perception of subjective contours did not occur. Data analysis revealed a significant preference for the subjective contour display. In experiment 2, habituation-dishabituation was used with 4-month-old infants. They were tested for their ability to discriminate between the illusory Kanizsa square that continuously moved back and forth and an illusory square which changed positions randomly. Although the infants did not show differences in dishabituation as a function of the habituation display, they looked significantly longer at the continuously moving display.  相似文献   

11.
12.
13.
Gregory (1972) has claimed that the Poggendorff misalignment effect occurs when the collinear obliques are separated by subjective rather than real contours. He used two figures to demonstrate this variant of the illusion. Two experiments to test the claim are reported. The first showed that apparent misalignment in one of the two original figures is no greater than that with two obliques alone (the oblique line effect), but misalignment in the other is greater than with two oblique lines and than with a control without subjective contours. The second experiment showed that apparent misalignment in the second figure was less than in two control figures without subjective contours. Since this reduced effect was probably due to the nature of the intersection between the oblique and a semi-circular element, the role of subjective contours remains unsettled.  相似文献   

14.
Displays yielding edges visible at sites where the visual stimulus was homogeneous (subjective contours) as well as with edges defined by spatial discontinuities in luminance (real contours) were used to induce the tilt aftereffect. Under monoptic conditions, the aftereffect was larger when the inspection and test edges were shown in the same colored light than when they were shown in different colored lights. Under dichoptic conditions (display of inspection edges to one eye and test edges to the other eye), the aftereffect was reduced in size and it was no longer selective to the color relationship between the inspection and test stimuli. Similar results were obtained with subjective and real contours. In the recent literature, subjective contours have been treated as products of cognitive and inferential operations, whereas neural edge detectors have been implicated in the perception of real contours. The present data suggest, however, the need for caution in attributing the perception of real and subjective contours to fundamentally different processes.  相似文献   

15.
The perception of subjective contours in visual displays that characteristically produce them among adults was studied for children between 3 and 6 years. Evidence for visually creating subjective contours was derived in two ways: (a) by means of direct perception, and (b) by means of recognition of the typically completed shape from among members of a matching series. With both procedures, there were significant age-related contours. A majority of 3-year-olds showed at least one instance of figural completion based on direct perception, and their average recognition performance was 60%. By 5 years, all children provided a clear indication that they had completed at least one figure by means of subjective contours, and their recognition accuracy was 100%. The overall findings provide age-related information that must be accounted for by theories of perceptual development; in particular, those dealing with pictorial perception.  相似文献   

16.
The disappearance characteristics of luminous designs were studied in three experiments. The stimuli were geometric forms set off by either real or subjective contours. Subjective-contour forms fragmented more often and in a manner qualitatively different from that of forms created with real contours. Previewing a real-contour form increased the subsequent fragmentation of that form, but no adaptation effects were noted among forms created with subjective contours, and there was no cross-contour adaptation. These results are interpreted as inconsistent with the position that subjective contours result from the partial activation of feature-analyzer mechanisms in the visual system.  相似文献   

17.
18.
19.
We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号