首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs). However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

2.
The spatial-frequency theory of vision has been supported by adaptation studies using checkerboards in which contingent color aftereffects (CAEs) were produced at fundamental frequencies oriented at 45\dg to the edges. A replication of this study failed to produce CAEs at the orientation of either the edges or the fundamentals. Using a computer-generated display, no CAEs were produced by adaptation of a square or an oblique checkerboard. But when one type of checkerboard (4 cpd) was adapted alone, CAEs were produced on the adapted checkerboard and on sine-wave gratings aligned with the fundamental and third harmonics of the checkerboard spectrum. Adaptation of a coarser checkerboard (0.80 cpd) produced CAEs aligned with both the edges and the harmonic frequencies. With checkerboards of both frequencies, CAEs were also found on the other type of checkerboard that had not been adapted. This observation raises problems for any edge-detector theory of vision, because there was no adaptation to edges. It was concluded that spatial-frequency mechanisms are operating at both low- and high-spatial frequencies and that an edge mechanism is operative at lower frequencies. The implications of these results are assessed for other theories of spatial vision.  相似文献   

3.
The spatial-frequency theory of vision has been supported by adaptation studies using checkerboards in which contingent color aftereffects (CAEs) were produced at fundamental frequencies oriented at 45 degrees to the edges. A replication of this study failed to produce CAEs at the orientation of either the edges or the fundamentals. Using a computer-generated display, no CAEs were produced by adaptation of a square or an oblique checkerboard. But when one type of checkerboard (4 cpd) was adapted alone, CAEs were produced on the adapted checkerboard and on sine-wave gratings aligned with the fundamental and third harmonics of the checkerboard spectrum. Adaptation of a coarser checkerboard (0.80 cpd) produced CAEs aligned with both the edges and the harmonic frequencies. With checkerboards of both frequencies, CAEs were also found on the other type of checkerboard that had not been adapted. This observation raises problems for any edge-detector theory of vision, because there was no adaptation to edges. It was concluded that spatial-frequency mechanisms are operating at both low- and high-spatial frequencies and that an edge mechanism is operative at lower frequencies. The implications of these results are assessed for other theories of spatial vision.  相似文献   

4.
The McCollough effect is an orientation-specific color aftereffect induced by adapting to colored gratings. We examined how the McCollough effect depends on the relationships between color and luminance within the inducing and test gratings and compared the aftereffects to the color changes predicted from selective adaptation to different color-luminance combinations. Our results suggest that the important contingency underlying the McCollough effect is between orientation and color-luminance direction and are consistent with sensitivity changes within mechanisms tuned to specific color-luminance directions. Aftereffects are similar in magnitude for adapting color pairs that differ only in S cone excitation or L and M cone excitation, and they have a similar dependence on spatial frequency. In particular, orientation-specific aftereffects are induced for S cone colors even when the grating frequencies are above the S cone resolution limit. Thus, the McCollough effect persists even when different cone classes encode the orientation and color of the gratings.  相似文献   

5.
The McCollough effect is an orientation-specific color aftereffect induced by adapting to colored gratings. We examined how the McCollough effect depends on the relationships between color and luminance within the inducing and test gratings and compared the aftereffects to the color changes predicted from selective adaptation to different color—luminance combinations. Our results suggest that the important contingency underlying the McCollough effect is between orientation and color—luminance direction and are consistent with sensitivity changes within mechanisms tuned to specific color—luminance directions. Aftereffects are similar in magnitude for adapting color pairs that differ only in S cone excitation or L and M cone excitation, and they have a similar dependence on spatial frequency. In particular, orientation-specific aftereffects are induced for S cone colors even when the grating frequencies are above the S cone resolution limit. Thus, the McCollough effect persists even when different cone classes encode the orientation and color of the gratings.  相似文献   

6.
A “competition” paradigm was developed to examine separately the effects of pattern contrast and spatial frequency characteristics on the strength of orientation-contingent color aftereffects (McCollough effects). After adapting to alternately presented red/black and green/black square-wave gratings (one horizontal, one vertical), 11 subjects viewed seven different kinds of test patterns. Unlike Standard McCollough effect test stimuli, the present patterns had variable luminance profiles running both horizontally and vertically within each test pattern area. Forced choice responses were used to determine which aftereffect color (red or green) appeared, as characteristics of vertical and horizontal luminance profiles were varied separately among test stimulus types. We conclude that pattern contrast and human contrast sensitivity account for aftereffect colors in such stimuli. When contrast is taken into consideration, aftereffects are not predicted by similarity between adaptation and test pattern Fourier characteristics, nor are they predicted by the width, per se, of pattern elements.  相似文献   

7.
Ss were alternately adapted to vertical and horizontal gratings that consisted of black bars and colored slits. The slits of one grating were green and of the other, magenta. The widths of the black bars and the colored slits were varied independently during adaptation and testing. This design separates the relative influence of bar width, slit width, and spatial frequency on an orientation specific color aftereffect known as the McCollough effect. Black bar width had the major influence on the strength of the aftereffect, suggesting that the neurophysiological mechanism underlying the McCullough effect might consist of orientation specific units that are sensitive to both the widths of black bars and the chromatic characteristics of their surrounds.  相似文献   

8.
Subjects were exposed to a vertical chromatic grating alternating with horizontal chromatic grating of the identical frequency. They were then tested with a series of test gratings of varied spatial frequencies to examine whether the responses were effected by the spatial frequency of the adaptation pattern in relation to the test pattern. It was found that maximum response occurred when adaptation and test gratings had the same spatial frequency, the effect was asymmetric and finally that enhancements were found at octaves. Thus the experiment further demonstrated that neural elements specific to spatial frequency exist in the human visual system.  相似文献   

9.
Visual field differences in spatial frequency discrimination   总被引:3,自引:0,他引:3  
Subjects discriminated between sine-wave gratings that differed by either +/-0.125 octaves (small difference) or +/-1.0 octaves (large difference). Baseline stimuli consisted of either 1.0 or 4.0 cycles per degree gratings. A left visual field advantage was obtained for the small difference in frequency, with no visual field advantages for the large difference in frequency. Similarly, moderate support for right versus left visual field advantages in processing high versus low spatial frequencies was found, although these interactions were not statistically significant. The results are discussed in light of Kosslyn's (1987) categorical and coordinate framework.  相似文献   

10.
Liu, Tyler, and Schor (1992 Vision Research 32 1471-1479) reported the surprising finding that dichoptically presented orthogonal sine-wave gratings do not always produce binocular rivalry. Gratings of high spatial frequency, and especially of low contrast, fuse to produce a stable percept of a dichoptic plaid. Using a somewhat different perceptual task, we replicated those findings and extended them. The probability of a plaid percept is higher for square-wave gratings than for sine-wave gratings, and higher still for rectangular-wave gratings with high duty cycles (with very thin light or dark bars). Experiments were conducted to test whether this duty-cycle effect was due to changes in overall luminance, or in the size of the regions of luminance congruity (which may reduce the probability of rivalry), but no such effects could account for the results. The presence of locally conflicting contour information in the two eyes was shown to be an important determinant of rivalry onset, but, since removing such regions did not eliminate rivalry, other factors also have a role to play. The spatial frequency composition of the gratings is one such factor which is consistent with all of the findings we report.  相似文献   

11.
Observers indicated whether a stimulus presented to one visual field or the other consisted of two sine-wave gratings (the baseline stimulus) or those same two gratings with the addition of a 2 cycle per degree (cpd) component. When the absolute spatial frequencies of the baseline stimulus were low (0.5 and 1.0 cpd), there was a left visual field-right hemisphere (LVF-RH) advantage in reaction time (RT) to respond to the baseline stimulus which disappeared when the 2 cpd component was added (i.e., the stimulus consisted of 0.5, 1.0, and 2.0 cpd components). When the absolute spatial frequencies of the baseline stimulus were moderate to high (4.0 and 8.0 cpd), a right visual field-left hemisphere advantage in RT to respond to the baseline stimulus approached significance and shifted to a significant LVF-RH advantage when the 2 cpd component was added (i.e., the stimulus consisted of 2.0, 4.0, and 8.0 cpd components. That is, adding the same 2 cpd component caused opposite shifts in visual laterality depending on whether 2 cpd was a relatively high or relatively low frequency compared to the baseline.  相似文献   

12.
An orientation-specific chromatic aftereffect was observed when a single colored grating was used as an induction stimulus. The magnitude of the aftereffect was compared to that obtained when alternating orthogonal gratings in complementary hues were used as induction stimuli. The two-stimulus condition produced a stronger aftereffect than a single-stimulus condition. This facilitation was also obtained when a colored plain square with no grating was substituted for the second colored grating in the two-stimulus condition. The results suggest that the McCollough effect involves adaptation of two different mechanisms, one which is orientation-specific and one which is not.  相似文献   

13.
Figure-ground organization of an ambiguous pattern can be manipulated by the spatial and temporal frequency content of the two regions of the pattern. Controlling for space-averaged luminance and perceived contrast, we tested patterns in which the two regions of the ambiguous pattern contained sine-wave gratings of 8, 4, 1, or 0.5 cycles per degree (cpd) undergoing on:off flicker at the rates of 0, 3.75, 7.5, or 15 Hz. For a full set of combinations of temporal frequency differences, with each spatial frequency the higher temporal frequency was seen as background for more of the viewing time. For two spatial frequency combinations, 1 and 4 cpd, and 1 and 8 cpd, tested under each of the four temporal frequencies, the lower spatial frequency region was seen as the background for more of the viewing time. When the effects of spatial and temporal frequency were set in opposition, neither was predominant in determining perceptual organization. It is suggested that figure-ground organization may parallel the sustained-transient response characteristics of the visual system.  相似文献   

14.
Brief trains of pulsed stimuli were used to assess whether magnocellular or parvocellular visual pathways could be differentiated perceptually. Trains of either one to four sine-wave, square-wave, or checkerboard gratings were presented at three temporal and two spatial frequencies to six observers. The task of the observer was to report the perceived number of stimuli (gratings) in a train. The difference between actual number and perceived number of gratings was recorded as an error score. It was found that neither the pattern nor the spatial frequency of the gratings significantly affected perceptual accuracy. On the other hand, the number of gratings in a train and the interstimulus interval between gratings produced significant differences. Perceptual accuracy was greater when lower numbers of gratings in a train were presented with longer interstimulus intervals. The observers typically reported fewer stimuli than were presented. The source of the discrepancy is discussed in terms of a light adaptive process initiated in the retina.  相似文献   

15.
The McCollough effect is a striking color aftereffect that is linked to the orientation of the patterns used to induce it. To produce the McCollough effect, two differently oriented grating patterns, such as a red-and-black vertical grating and a green-and-black horizontal grating, are viewed alternately for a few minutes. After such colored gratings are viewed, the white sections of avertical black-and-white test grating appear to be tinged with green, and the white sections of a horizontal grating appear to be tinged with pink. We present evidence from a functional magnetic resonance imaging study that the perception of the McCollough effect correlates with increased activation in the lingual and fusiform gyriùextrastriate visual areas that have been implicated in color perception in humans.  相似文献   

16.
We have used a null method to measure the orientation-contingent aftereffects of color first described by McCollough. After alternately inspecting, for example, a green horizontal line grating and a magenta vertical line grating, the Os report that in achromatic test gratings the horizontal lines appear pinkish and the vertical lines appear greenish. We have used a special color-mixing projector to add variable amounts of green and magenta light to the test gratings until they appear matched and nearly achromatic. The colorimetric purity needed to achieve this null setting is a quantitative measure of the strength of the colored aftereffect. Following inspections of the colored patterns ranging from 15 sec to 150 min, six Os showed aftereffects lasting from a few minutes to 7 or more days. The indices of colorimetric purity increase with inspection time and decline with time after inspection. The decay function is not quite linear either on semilog or on log-log coordinates. The rate of decay is mainly dependent on the magnitude of the effect built up during inspection. We conclude that the buildup and decay of these aftereffects show some of the time characteristics usually associated with central adaptability rather than sensory adaptation.  相似文献   

17.
The hypothesis that induction of the McCollough effect (spatially selective color aftereffects) entails adaptation of monocularly driven detectors tuned to both spatial and color attributes of the visual stimulus was examined in four experiments. The McCollough effect could not be generated by displaying contour information to one eye and color information to the other eye during inspection, even in the absence of binocular rivalry. Nor was it possible to induce depth-specific color aftereffects following an inspection period during which random-dot stereograms were viewed, with crossed and uncrossed disparity seen in different colored light. Masking and aftereffect in the perception of stereoscopic depth were also nonselective to color; in both cases, perceptual distortion was controlled by stereospatial variables but not by the color relationship between the inspection and test stimuli. The results suggest that binocularly driven spatial detectors in human vision are insensitive to wavelength.  相似文献   

18.
A McCollough effect was induced in subjects by having them view typical adapting stimuli binocularly for 5 min. In the control condition, the strength of the McCollough effect was measured 20 min after the end of the adaptation. The strength was measured during monocular and binocular viewing of a test pattern via a color cancellation technique. Monocular strengths for the two eyes of a given subject were equal to each other and slightly weaker than the binocular strength. In the test condition, 15 min of the 20 min between adaptation and testing were spent monocularly viewing black and white gratings of the same orientation and spatial frequency as the adapting gratings. The strength of the effect as measured ipsilaterally was markedly decreased from that in the control condition. The strength of the effect as measured with the contralateral eye showed only a small decrease from that of the control condition. This finding is relevant to various models of the McCollough effect and related color aftereffects, especially those that posit a “learning” type of mechanism between achromatic spatial channels (which exhibit clear interocular transfer of various achromatic effects) and monocular color channels.  相似文献   

19.
Monkeys show an oblique effect.   总被引:1,自引:0,他引:1  
J A Bauer  D A Owens  J Thomas  R Held 《Perception》1979,8(3):247-253
Monkeys aligned a cursor bar with high-contrast square-wave gratings presented in a variety of orientations. Alignment time increased with increasing spatial frequency from 6 to 24 cycles deg-1 regardless of the orientation of the grating. At higher spatial frequencies, alignment tasks took longer for obliquely oriented gratings than for horizontal and vertical ones. Reducing grating contrast by blurring the image of the 24 cycle deg-1 grating also produced longer alignment times for the obliques. These data indicate that monkeys have an oblique effect similar to that found in humans, implying that the monkey is a useful animal model for investigating the development of meridional anisotropies.  相似文献   

20.
The McCollough effect is a colour aftereffect that is contingent on pattern orientation. Three experiments were conducted to establish whether such aftereffect colours could serve as a basis for discrimination in several rapid discrimination tasks. In the first experiment it was investigated whether aftereffect colours could act like a simple 'feature' in a visual search task involving a difficult orientation discrimination. Without McCollough adaptation, the time taken to detect a 'target' among 'distractors' increased substantially as the number of distractors increased. With adaptation, detection time was essentially independent of the number of distractors, indicating that the nature of the task changed from a difficult orientation discrimination to a simple discrimination based on differences in aftereffect colours. The second and third experiments employed a difficult four-alternative forced-choice procedure in which subjects were required to discriminate a monochromatic patch of square-wave grating oriented at 45 degrees from three others oriented at 135 degrees (and vice versa). The gratings were presented very briefly (67-333 ms) followed by a 500 ms mask. Subjects performed the task with and without McCollough adaptation. Performance was strikingly better after adaptation: colour aftereffects could be used to make the discrimination even at exposure durations as short as 67 ms. The third experiment demonstrated that this enhanced performance was indeed due to perceived colour differences (rather than a possible contrast difference). The results of the three experiments are discussed in relation to proposals about the locus of the McCollough effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号