首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perceptual awareness and its loss in unilateral neglect and extinction   总被引:18,自引:0,他引:18  
Driver J  Vuilleumier P 《Cognition》2001,79(1-2):39-88
We review recent evidence from studies of patients with unilateral neglect and/or extinction, who suffer from a loss of awareness for stimuli towards the affected side of space. We contrast their deficit with the effects of damage to primary sensory areas, noting that such areas can remain structurally intact in neglect, with lesions typically centred on the right inferior parietal lobe. In keeping with preservation of initial sensory pathways, many recent studies have shown that considerable residual processing can still take place for neglected or extinguished stimuli, yet without reaching the patient's awareness. This ranges from preserved visual grouping processes through to activation of identity, semantics and emotional significance. Similarly to 'preattentive' processing in normals, such residual processing can modulate what will enter the patient's awareness. Recent studies have used measures such as ERPs and fMRI to determine the neural correlates of conscious versus unconscious perception in the patients, which in turn can be related to the anatomy of their lesions. We relate the patient findings to neurophysiological data from areas in the monkey parietal lobe, which indicate that these serve as cross-modal and sensorimotor interfaces highlighting currently relevant locations as targets for intentional action. We speculate on the special role such brain regions may play in perceptual awareness, seeking to explain how damage to a system which appears primarily to code space could eliminate awareness even for non-spatial stimulus properties at affected locations. This may relate to the extreme nature of 'winner-takes-all' functions within the parietal lobe, and their correspondingly strong influence on other brain areas.  相似文献   

2.
Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults (38 cognitively stable and 37 individuals with cognitive decline after 3 years). Dementia screening 6 years after scanning resulted in nine AD cases from the cognitively stable (n=3) and cognitive decline group (n=6), who were assigned to a third group, the preclinical AD group. When regional differences in cortical volume in the parietal lobe areas were compared between groups, significant differences were found between either the cognitive decline or stable group on the one hand and preclinical AD individuals on the other hand in the inferior parietal lobule. Group membership was best predicted by the grey matter volume of the inferior parietal lobule, compared to the other parietal lobe areas. The parietal lobe was characterised by a differential atrophy pattern based on cognitive status, which is in agreement with the 'last-developed-first-atrophied' principle. Future studies should investigate the surplus value of the inferior parietal lobe as a potential marker for the diagnosis of AD compared to other brain regions, such as the medial temporal lobe and the prefrontal lobe.  相似文献   

3.
Separate visual representations in the planning and control of action   总被引:3,自引:0,他引:3  
Glover S 《The Behavioral and brain sciences》2004,27(1):3-24; discussion 24-78
Evidence for a dichotomy between the planning of an action and its on-line control in humans is reviewed. This evidence suggests that planning and control each serve a specialized purpose utilizing distinct visual representations. Evidence from behavioral studies suggests that planning is influenced by a large array of visual and cognitive information, whereas control is influenced solely by the spatial characteristics of the target, including such things as its size, shape, orientation, and so forth. Evidence from brain imaging and neuropsychology suggests that planning and control are subserved by separate visual centers in the posterior parietal lobes, each constituting part of a larger network for planning and control. Planning appears to rely on phylogenetically newer regions in the inferior parietal lobe, along with the frontal lobes and basal ganglia, whereas control appears to rely on older regions in the superior parietal lobe, along with the cerebellum.  相似文献   

4.
This review describes the functional anatomy of word comprehension and production. Data from functional neuroimaging studies of normal subjects are used to determine the distributed set of brain regions that are engaged during particular language tasks and data from studies of patients with neurological damage are used to determine which of these regions are necessary for task performance. This combination of techniques indicates that the left inferior temporal and left posterior inferior parietal cortices are required for accessing semantic knowledge; the left posterior basal temporal lobe and the left frontal operculum are required for translating semantics into phonological output and the left anterior inferior parietal cortex is required for translating orthography to phonology. Further studies are required to establish the specific functions of the different regions and how these functions interact to provide our sophisticated language system.  相似文献   

5.
The order of events, whether two events are seen as simultaneous or successive, sets the stage for the moment-to-moment interpretation of the visual world. Evidence from patients who have lesions to the parietal lobes and transcranial magnetic stimulation studies in normal subjects suggest that the right inferior parietal lobe underlies this analysis of event timing. Judgment of temporal order, simultaneity and high-level motion are all compromised following right parietal lesions and degraded after transcranial magnetic stimulation over the right parietal but not elsewhere. The results suggest that the right parietal lobe serves as part of a when pathway for both visual fields. We propose that the disruption of this mechanism is the underlying cause of a wide range of seemingly unrelated tasks being impaired in right parietal patients.  相似文献   

6.
Although the human mirror neuron system (MNS) is critical for action observation and imitation, most MNS investigations overlook the visuospatial transformation processes that allow individuals to interpret and imitate actions observed from differing perspectives. This problem is not trivial since accurately reaching for and grasping an object requires a visuospatial transformation mechanism capable of precisely remapping fine motor skills where the observer’s and imitator’s arms and hands may have quite different orientations and sizes. Accordingly, here we describe a novel neural model to investigate the dynamics between the fronto-parietal MNS and visuospatial processes during observation and imitation of a reaching and grasping action. Our model encompasses i) the inferior frontal gyrus (IFG) and inferior parietal lobule (IPL), regions that are postulated to produce neural drive and sensory predictions, respectively; ii) the middle temporal (MT) and middle superior temporal (MST) regions that are postulated to process visual motion of a particular action; and iii) the superior parietal lobule (SPL) and intra-parietal sulcus (IPS) that are hypothesized to encode the visuospatial transformations enabling action observation/imitation based on different visuospatial viewpoints. The results reveal that when a demonstrator executes an action, an imitator can reproduce it with similar kinematics, independently of differences in anthropometry, distance, and viewpoint. As with prior empirical findings, similar model synaptic activity was observed during both action observation and execution along with the existence of both view-independent and view-dependent neural populations in the frontal MNS. Importantly, this work generates testable behavioral and neurophysiological predictions. Namely, the model predicts that i) during observation/imitation the response time increases linearly as the rotation angle of the observed action increases but remain similar when performing both clockwise and counterclockwise rotation and ii) IPL embeds essentially view-independent neurons while SPL/IPS includes both view-independent and view-dependent neurons. Overall, this work suggests that MT/MST visuomotion processes combined with the SPL/IPS allow the MNS to observe and imitate actions independently of demonstrator-imitator spatial relationships.  相似文献   

7.
研究表明提取学习相比简单重复学习更加益于记忆的保持。近期的脑成像研究发现, 与简单重复学习相比, 提取学习时前额叶、顶下叶、颞叶及一些皮层下结构的脑激活更大, 这些脑区的激活也能预测随后的记忆成绩。这些研究表明, 在更多认知资源的投入和工作记忆系统的参与下, 提取学习是一个获得、加工、整合和巩固语义关系的过程。提取学习充分调用认知和情感、皮层与皮层下机能, 同时还发挥语义和情景记忆优势来促进学习与记忆。  相似文献   

8.
Reflexive joint attention depends on lateralized cortical connections   总被引:5,自引:0,他引:5  
Joint attention, the tendency to spontaneously direct attention to where someone else is looking, has been thought to occur because eye direction provides a reliable cue to the presence of important events in the environment. We have discovered, however, that adults will shift their attention to where a schematic face is looking—even when gaze direction does not predict any events in the environment. Research with 2 split-brain patients revealed that this reflexive joint attention is lateralized to a single hemisphere. Moreover, although this phenomenon could be inhibited by inversion of a face, eyes alone produced reflexive shifts of attention. Consistent with recent functional neuroimaging studies, these results suggest that lateralized cortical connections between (a) temporal lobe subsystems specialized for processing upright faces and gaze and (b) the parietal area specialized for orienting spatial attention underlie human reflexive shifts of attention in response to gaze direction.  相似文献   

9.
Semantic memory includes all acquired knowledge about the world and is the basis for nearly all human activity, yet its neurobiological foundation is only now becoming clear. Recent neuroimaging studies demonstrate two striking results: the participation of modality-specific sensory, motor, and emotion systems in language comprehension, and the existence of large brain regions that participate in comprehension tasks but are not modality-specific. These latter regions, which include the inferior parietal lobe and much of the temporal lobe, lie at convergences of multiple perceptual processing streams. These convergences enable increasingly abstract, supramodal representations of perceptual experience that support a variety of conceptual functions including object recognition, social cognition, language, and the remarkable human capacity to remember the past and imagine the future.  相似文献   

10.
The nature of obsessions has led researchers to try to determine if the main problem in obsessive-compulsive disorder (OCD) is impaired inhibitory control. Previous studies report that the effort to suppress is one of the factors that increase the frequency of obsessive thoughts. Based on these results and those of the present study that suggest inferior parietal lobe (IPL) abnormality in OCD and findings of a recent study that reported the importance of the right posterior parietal cortex in cognitive control of a simple mental image, the present cognitive control paradigm study aimed to determine whether there is a difference in brain dynamics between OCD patients and non-obsessive controls while performing tasks that necessitate cognitive control of a simple mental image, and whether the right posterior parietal region is one of the regions in which a difference in activity between the OCD patients and controls would be observed. Functional brain imaging was performed while the participants attempted to suppress, imagine, or manipulate a mental image. The general linear model showed that there was a main effect of group and main effect of task. Accordingly, in all contrasts (suppression minus free-imagination, erasing minus free-imagination, and imagination minus free-imagination), the right IPL, right posterior cingulate cortex, and right superior frontal gyrus activity were lower in the OCD patients than in the healthy controls. These results and the observed correlations between activity levels, and symptom and subjective performance scores are discussed. In conclusion, the results of the present study and those of previous studies suggest that the main problem in OCD might be difficulty activating the right frontoparietal networks during tasks that require cognitive control, which might result in the intrusiveness of obsessive thoughts.  相似文献   

11.
Recent anatomo‐clinical correlation studies have extended to the superior temporal gyrus, the right hemisphere lesion sites associated with the left unilateral spatial neglect, in addition to the traditional posterior‐inferior‐parietal localization of the responsible lesion (supramarginal gyrus, at the temporo‐parietal junction). The study aimed at teasing apart, by means of repetitive transcranial magnetic stimulation (rTMS), the contribution of the inferior parietal lobule (angular gyrus versus supramarginal gyrus) and of the superior temporal gyrus of the right hemisphere, in making judgments about the mid‐point of a horizontal line, a widely used task for detecting and investigating spatial neglect. rTMS trains at 25 Hz frequency were delivered over the inferior parietal lobule (angular gyrus and supramarginal gyrus), the superior temporal gyrus and the anterior parietal lobe of the right hemisphere, in 10 neurologically unimpaired participants, performing a line bisection judgment task. rTMS of the inferior parietal lobule at the level of the supramarginal gyrus brought about a rightward error in the bisection judgment, ipsilateral to the side of the rTMS, with stimulation over the other sites being ineffective. The neural correlates of computing the mid‐point of a horizontal segment include the right supramarginal gyrus in the inferior parietal lobule and do not extend to the angular gyrus and the superior temporal gyrus. These rTMS data in unimpaired subjects constrain the evidence from lesion studies in brain‐damaged patients, emphasizing the major role of a subset of relevant regions.  相似文献   

12.
Talking reduces attention resulting in real-world crash risks to drivers that talk on a phone and drive. Driving is a behavior that is very demanding on spatial attention, suggesting potentially large interference by spatial codes in language. The current study investigated how different types of verbal codes influence visual attention during dual-task performance. In two experiments, participants performed a spatial or non-spatial verbal task while simultaneously performing a visual attention task. The results showed a larger decrement to visual attention performance when participants were concurrently engaged in a spatial verbal task. The results of the second experiment isolated this effect to the right cerebral hemisphere, consistent with a role for shared right parietal resources. These results are consistent with the idea that processing codes are an important component of coordinating talking and driving but generally inconsistent with a broad class of bottleneck approaches that describes dual-task decrements but treats component tasks as cognitively equivalent.  相似文献   

13.
数字加工的认知神经基础   总被引:7,自引:1,他引:6  
数学作为人类最重要的发明,越来越引起认知神经科学家的重视与关注,究竟什么才是人类数学知识的脑基础?脑成像的研究已经证实了一个参与数学运算加工的神经网络,包括顶叶皮质、侧前额叶皮质、内前额叶皮质、和小脑。实验证明:人脑对于数字具有一种模拟表达,类似于将数量在脑内部作为一种内心的数字线上的点来操作。神经心理学的研究证实数字加工的这种数量表达分布于两半球,其优势区位于下顶叶皮质区。  相似文献   

14.
Functional neurological changes after surgery combined with diffusion tensor imaging (DTI) tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1) of the inferior parietal lobe (IPL). DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF) by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences.  相似文献   

15.
路径整合是指巡航者对与自身运动有关的信息进行整合来完成巡航任务的过程。这些与自身运动有关的信息可以是内源性的,如前庭感觉、本体感觉、动作指令的信息;也可以是外源性的,如视觉流。路径整合在许多物种中存在。人类路径整合的行为实验表明,以自我为参照系的空间表征和以环境为参照系的空间表征都有可能支持路径整合。神经科学的研究则表明,海马、内嗅皮层等内侧颞叶区域和以楔前叶等顶叶区域都与人类路径整合密切相关。  相似文献   

16.
If one writes with a pen grasped between the toes, or a pencil held in the mouth, the handwriting style may be of poor quality but can be identified as belonging to a particular individual. Like other actions, such as grasping or pointing, different body parts can be used to produce the movement. These findings, of reasonably consistent spatial and temporal productions by different effectors, have been used to argue for the concept of motor equivalence and the existence of motor programs abstracted from particular effectors. In this study subjects were required to perform an action (grasping a sweet) with different effectors (the mouth or the hand) while the brain was scanned. Activation of the inferior parietal lobe during real and imagined mouth grasping, and during real hand grasping actions was demonstrated. Primate neurophysiological research has implicated this region in a movement-planning role. Our results confirm the importance of the inferior parietal lobe in integrating converging multimodal sensory information for coding of general action patterns in humans.  相似文献   

17.
陈巍  汪寅 《心理科学》2015,(1):237-242
镜像神经元作为近二十年来神经科学领域内最重要的发现之一,相关的一系列研究掀起了一场"理解社会行为的革命"。然而,通过系统考察镜像神经元最初的操作性定义、基本功能及其实验证据,发现许多研究者对于镜像神经元的定义存在误解,人类脑中是否存在镜像神经元及其功能依然是当前学术界的争议焦点。迄今仍然缺乏令人信服的证据表明镜像神经元(或系统)就是动作理解、动作模仿、共情以及读心的直接神经机制。因此,将镜像神经元视为"认知科学的圣杯"的主张是一种落后的模块论意识形态,只能催生新的"神经神话"。  相似文献   

18.
The concreteness effect: evidence for dual coding and context availability   总被引:10,自引:0,他引:10  
The term concreteness effect refers to the observation that concrete nouns are processed faster and more accurately than abstract nouns in a variety of cognitive tasks. Two models have been proposed to explain the neuronal basis of the concreteness effect. The dual-coding theory attributes the advantage to the access of a right hemisphere image based system in addition to a verbal system by concrete words. The context availability theory argues that concrete words activate a broader contextual verbal support, which results in faster processing, but do not access a distinct image based system. We used event-related fMRI to detect the brain regions that subserve to the concreteness effect. We found greater activation in the lower right and left parietal lobes, in the left inferior frontal lobe and in the precuneus during encoding of concrete compared to abstract nouns. This makes a single exclusive theory unlikely and rather suggests a combination of both models. Superior encoding of concrete words in the present study may result from (1) greater verbal context resources reflected by the activation of left parietal and frontal associative areas, and (2) the additional activation of a non-verbal, perhaps spatial imagery-based system, in the right parietal lobe.  相似文献   

19.
Pavlovian conditioning requires the convergence and simultaneous activation of neural circuitry that supports conditioned stimulus (CS) and unconditioned stimulus (US) processes. However, in trace conditioning, the CS and US are separated by a period of time called the trace interval, and thus do not overlap. Therefore, determining brain regions that support associative learning by maintaining a CS representation during the trace interval is an important issue for conditioning research. Prior functional magnetic resonance imaging (fMRI) research has identified brain regions that support trace-conditioning processes. However, relatively little is known about whether this activity is specific to the trace CS, the trace interval, or both periods of time. The present study was designed to disentangle the hemodynamic response produced by the trace CS from that associated with the trace interval, in order to identify learning-related activation during these distinct components of a trace-conditioning trial. Trace-conditioned activity was observed within dorsomedial prefrontal cortex (PFC), dorsolateral PFC, insula, inferior parietal lobule (IPL), and posterior cingulate (PCC). Each of these regions showed learning-related activity during the trace CS, while trace-interval activity was only observed within a subset of these areas (i.e., dorsomedial PFC, PCC, right dorsolateral PFC, right IPL, right superior/middle temporal gyrus, and bilateral insula). Trace-interval activity was greater in right than in left dorsolateral PFC, IPL, and superior/middle temporal gyrus. These findings indicate that components of the prefrontal, cingulate, insular, and parietal cortices support trace-interval processes, as well as suggesting that a right-lateralized fronto-parietal circuit may play a unique role in trace conditioning.  相似文献   

20.
鉴于阅读起始于基础视觉加工阶段, 越来越多的研究者开始关注阅读障碍者的视觉空间注意加工能力。视觉空间注意是指个体对视觉刺激的空间位置的注意, 可通过线索提示、视觉搜索和视觉注意广度等视觉任务来考察。大量国内外研究发现, 发展性阅读障碍者在视觉空间注意任务下表现出行为和神经活动方面的异常。其中的神经机制问题不仅反映在与视觉空间注意有关的顶叶区域激活异常, 还存在于脑区间功能连接异常(如顶叶区域与字形加工区的功能连接)。未来研究还需利用横断和追踪研究探讨阅读障碍与视觉空间注意能力发展关系的内在机制, 以及探究语言特性对阅读障碍者视觉空间注意缺陷的可能调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号