首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a preferential looking technique to investigate the effect of support ratio (a ratio of the physically specified contours to the total edge length) on the perception of Kanizsa illusory contours in infants aged 3-8 months. Previous work has shown that for adult observers the illusory-contour strength increases proportionally with the support ratio. When the support ratio was relatively high (66%), infants preferred illusory contours to non-illusory figures by 3-4 months of age (experiment 1). In contrast, only infants 7-8 months old showed this preference for illusory contours when the support ratio was reduced to 37% (experiment 3). Further, infants showed no preference for an outline version of the illusory-contour figure, which produced no illusory contours (experiment 2). This result confirms that the infants' preference reflects their perception of illusory contours. Our results show that (i) illusory-contour perception emerges at around 3-4 months of age, but (ii) that this ability is very limited until around 7-8 months of age.  相似文献   

2.
We investigated whether infants from 8-22 weeks of age were sensitive to the illusory contour created by aligned line terminators. Previous reports of illusory-contour detection in infants under 4 months old could be due to infants' preference for the presence of terminators rather than their configuration. We generated preferential-looking stimuli containing sinusoidal lines whose oscillating, abutting terminators give a strong illusory contour in adult perception. Our experiments demonstrated a preference in infants 8 weeks old and above for an oscillating illusory contour compared with a stimulus containing equal terminator density and movement. Control experiments excluded local line density, or attention to alignment in general, as the basis for this result. In the youngest age group (8-10 weeks) stimulus velocity appears to be critical in determining the visibility of illusory contours, which is consistent with other data on motion processing at this age. We conclude that, by 2 months of age, the infant's visual system contains the nonlinear mechanisms necessary to extract an illusory contour from aligned terminators.  相似文献   

3.
Recently, Masuda et al. (submitted for publication) showed that adults perceive moving rigid or nonrigid motion from illusory contour with neon color spreading in which the inducer has pendular motion with or without phase difference. In Experiment 1, we used the preferential looking method to investigate whether 3–8-month-old infants can discriminate illusory and non-illusory contour figures, and found that the 7–8-month-old, but not the 3–6-month-old, infants showed significant preference for illusory contour with phase difference. In Experiment 2, we tested the validity of the visual stimuli in the present study, and whether infants could detect illusory contour from the current neon color spreading figures. The results showed that all infants might detect illusory contour figure with neon color spreading figures. The results of Experiments 1 and 2 suggest that 7–8-month-old infants potentially perceive illusory contour from the visual stimulus with phase-different movement of inducers, which elicits the perception of nonrigid dynamic subjective contour in adults.  相似文献   

4.
In adults, a salient tone embedded in a sequence of nonsalient tones improves detection of a synchronously and briefly presented visual target in a rapid, visually distracting sequence. This phenomenon indicates that perception from one sensory modality can be influenced by another one even when the latter modality provides no information about the judged property itself. However, no study has revealed the age-related development of this kind of cross-modal enhancement. Here we tested the effect of concurrent and unique sounds on detection of illusory contours during infancy. We used a preferential looking technique to investigate whether audio-visual enhancement of the detection of illusory contours could be observed at 5, 6, and 7 months of age. A significant enhancement, induced by sound, of the preference for illusory contours was observed only in the 7-month-olds. These results suggest that audio-visual enhancement in visual target detection emerges at 7 months of age.  相似文献   

5.
Previous research, in which static figures were used, showed that the ability to perceive illusory contours emerges around 7 months of age. However, recently, evidence has suggested that 2-3-month-old infants are able to perceive illusory contours when motion information is available (Johnson & Mason, 2002; Otsuka & Yamaguchi, 2003). The present study was aimed at investigating whether even newborns might perceive kinetic illusory contours when a motion easily detected by the immature newborn's visual system (i.e. stroboscopic motion) is used. In Experiment 1, using a preference looking technique, newborns' perception of kinetic illusory contours was explored using a Kanizsa figure in a static and in a kinetic display. The results showed that newborns manifest a preference for the illusory contours only in the kinetic, but not in the static, condition. In Experiment 2, using an habituation technique, newborns were habituated to a moving shape that was matched with the background in terms of random-texture-surface; thus the recovery of the shape was possible relying only on kinetic information. The results showed that infants manifested a novelty preference when presented with luminance-defined familiar and novel shapes. Altogether these findings provide evidence that motion enhances (Experiment 1) and sometimes is sufficient (Experiment 2) to induce newborns' perception of illusory contours.  相似文献   

6.
Kavsek M  Yonas A 《Perception》2006,35(2):215-227
We investigated whether 4-month-old infants are capable of perceiving illusory contours produced by the Kanizsa-square display, first introduced by Prazdny (1983, Perception & Psychophysics 34 403-404), which tests whether a viewer perceives the illusory contour in the absence of brightness contrast (illusory brightness). Because the illusory square appears to move across the computer screen and infants are attracted to motion, this display holds their interest. In experiment 1, 4-month-old infants were tested for their ability to distinguish between a continuously moving illusory square and a continuously moving control display in which the pacman elements were rotated so that the perception of subjective contours did not occur. Data analysis revealed a significant preference for the subjective contour display. In experiment 2, habituation-dishabituation was used with 4-month-old infants. They were tested for their ability to discriminate between the illusory Kanizsa square that continuously moved back and forth and an illusory square which changed positions randomly. Although the infants did not show differences in dishabituation as a function of the habituation display, they looked significantly longer at the continuously moving display.  相似文献   

7.
Prior research indicates that, like adults, infants use enclosed regions to group elements. It is not clear whether infants or adults can use regions that have to be inferred from illusory contours to group elements. We examined whether 3- to 4-month-olds use illusory regions to group elements and generalize this organization to novel regions. Infants habituated to pairs of shapes in illusory vertical or horizontal regions subsequently discriminated, in novel regions, pairs of elements that had previously shared a region from pairs of elements that had been in different regions. A control group of infants, who had experienced the same stimuli except for the presence of illusory regions, failed to discriminate between within-region and between-region pairs of stimuli. These results reveal that (1) illusory regions can be used to group elements, (2) perceptual organization is sufficiently developed early in life for 3- to 4-month-olds to group on the basis of ecologically relevant illusory contours, and (3) such grouping in infancy generalizes to novel regions.  相似文献   

8.
The relation between color spreading and illusory contours   总被引:1,自引:0,他引:1  
In the present study, we examine the relation between neon color spreading (Redies & Spillmann, 1981) and illusory contours. In Experiment 1, the effects of misalignment between the line elements on the illusory contours in the Ehrenstein figure and in the Redies-Spillmann figure were examined. The remarkable overlap of the two curves for the likelihood of perceiving illusory contours in the Ehrenstein figure and in the Redies-Spillmann figure suggests that the illusory contours surrounding brightness enhancement (Ehrenstein, 1941) and those surrounding neon color spreading are caused by the same mechanism. We further examined both the effects of the interposed grids seen either in front of or behind the figures (Experiment 2) and the effects of misalignment (Experiment 3) on the illusory contours and range of color spreading, and found a high correlation between the appearance/disappearance of illusory contours and global/local color spreading. In Experiment 4, we added new lines to induce illusory contours to the line elements inducing local color spreading. We found that global color spreading was seen to cover the area surrounded by the illusory contours. On the basis of these findings, we suggest that there is an interaction between illusory contours and local color spreading.  相似文献   

9.
Three experiments were carried out to test the relationship between figure-background segregation and illusory contours. Illusory figures are believed to arise as byproducts of figure-background segregation. When, in a scene, part of what should be the background becomes an illusory figure, a mechanism of contour attribution favoring the area in which the illusory figure appears takes place. This mechanism is prevented from operating when the attribution of the contour is inhibited by the presence of "groupable" (connectable) contours. Spatial proximity is one of the factors affecting such grouping: the closer the connectable contours, the more likely is their grouping in a single unit and the less likely is the emergence of an illusory figure. Experimental results showed that the illusory effect was established when contours were prevented from being connected. This outcome is interpreted as evidence that a mechanism of contour attribution is effective in the formation of illusory figures.  相似文献   

10.
Otsuka Y  Kanazawa S  Yamaguchi MK 《Perception》2006,35(12):1625-1636
We examined perceptual transparency in infants. In a previous study, Johnson and Aslin (2000 Developmental Psychology 36 808 - 816) found that 4-month-olds could perceive transparency in a moving chromatic display, but not in an achromatic display. In this study, we further examined perceptual transparency in infants using a static achromatic display. Considering the development of figural organisation and contrast sensitivity, we assumed that 3- to 4-month-olds would perceive transparency even in a static achromatic display. We created a transparency and a non-transparent display composed of a partially overlapping circle and square, by switching the colours. Infants aged 3 to 4 months (n = 24) were familiarised with the transparency display (experiment 1) or with the non-transparent display (experiment 2). Then, they were confronted with a uniform colour and a two-colour figure. Infants showed novelty preference for the two-colour figure after they had been familiarised with the transparency display (experiment 1), but not after they had been familiarised with the non-transparent display (experiment 2). These results suggest that 3- to 4-month-old infants can perceive transparency in a static achromatic display.  相似文献   

11.
The perception of brightness differences in Ehrenstein figures and of illusory contours in phaseshifted line gratings was investigated as a function of the contrast polarity of the inducing elements. We presented either continuous lines or line-like arrangements composed of aligned dashes or dots whose spacing was varied. Ayes/no procedure was used in which naive observers had to decide whether or not they perceived a brightness difference in a given Ehrenstein figure or an illusory contour in a phase-shifted line grating. The results show that brightness differences are perceived to some extent in Ehrenstein figures with inducers of opposite polarity of contrast; however, the percentage ofyes responses was systematically lower and response times were longer than for figures with inducers of the same polarity. Phase-shifted line gratings with lines of opposite polarity of contrast yielded stronger illusory contours and shorter response times than those with lines of the same polarity. When the sign of contrast was not the same within a given line of induction, neither differences in brightness nor illusory contours were perceived. The results suggest that the mechanisms that lead to apparent differences in brightness are more sensitive to input of the same contrast polarity, the mechanisms generating illusory contours more sensitive to input of opposite polarity. The data are discussed in the light of a multistage approach to illusory form perception and some implications for cortical models of illusory contour integration are discussed.  相似文献   

12.
Subthreshold summation between physical target lines and illusory contours induced by edges such as those produced in the Kanizsa illusion has been reported in previous studies. Here, we investigated the ability of line-induced illusory contours, using Ehrenstein figures, to produce similar subthreshold summation. In the first experiment, three stimulus conditions were presented. The target line was superimposed on the illusory contour of a four-arm Ehrenstein figure, or the target was presented between two dots (which replaced the arms of the Ehrenstein figure), or the target was presented on an otherwise blank screen (control). Detection of the target line was significantly worse when presented on the illusory contour (on the Ehrenstein figure) than when presented between two dots. This result was consistent for both curved and straight target lines, as well as for a 100 ms presentation duration and unlimited presentation duration. Performance was worst in the control condition. The results for the three stimulus conditions were replicated in a second experiment in which an eight-arm Ehrenstein figure was used to produce a stronger and less ambiguous illusory contour. In the third experiment, the target was either superimposed on the illusory contour, or was located across the central gap (illusory surface) of the Ehrenstein figure, collinear with two arms of the figure. As in the first two experiments, the target was either presented on the Ehrenstein figure, or between dots, or on a blank screen. Detection was better in the dot condition than in the Ehrenstein condition, regardless of whether the target was presented on the illusory contour or collinear with the arms of the Ehrenstein figure. These three experiments demonstrate the ability of reduced spatial uncertainty to facilitate the detection of a target line, but do not provide any evidence for subthreshold summation between a physical target line and the illusory contours produced by an Ehrenstein figure. The incongruence of these results with previous findings on Kanizsa figures is discussed.  相似文献   

13.
Francis G  Wede J 《Perception》2010,39(11):1466-1475
Researchers have used several different types of illusory contours to investigate properties of human perception. One rarely used illusory contour is a combination of the abutting grating and Kanizsa illusions. We call this the offset-arcs illusion and provide an empirical investigation of the illusion. Through a series of four experiments, using different methods of measurement, we show that changes to the phase of the abutting-grating part of the inducing stimulus can dramatically change the perceived strength and clarity of the long-range illusory contour. The easy manipulation of illusion strength should make the offset-arcs illusion applicable to a wide range of studies that utilize long-range illusory contours. The lack of a brightness component to the illusion should allow the offset-arcs illusion to help separate perceptual grouping from surface brightness effects that are often confounded in other illusory contours.  相似文献   

14.
Shipley TF  Kellman PJ 《Perception》2003,32(8):985-999
Most computational and neural-style models of contour completion (ie illusory and occluded contours) are based on interpolation: the filling in of an edge between two visible edges. The results of three experiments suggest an alternative conception, that units are formed as a result of extrapolation from visible edges. In three experiments, subjects reported illusory contours between standard illusory-contour inducing elements and forms that do not, by themselves, induce illusory contours. We suggest that these forms are not a special case of inducing elements but that they represent a different class--receiving elements. Receiving elements are forms that can receive an illusory contour but cannot generate one, and they can alter contour formation. In experiment 1, receiving elements increased the judged clarity of illusory contours. In experiment 2, illusory edges were seen to connect to corners, line ends, and even the edges of circles. Boundary formation in motion displays also appears to be based on extrapolation. In experiment 3, subjects reported that small moving dots altered the formation of spatiotemporally defined boundaries. Implications for higher-order operator and network models of boundary formation are discussed.  相似文献   

15.
We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli.  相似文献   

16.
We examined the ability of young infants (3- and 4-month-olds) to detect faces in the two-tone images often referred to as Mooney faces. In Experiment 1, this performance was examined in conditions of high and low visibility of local features and with either the presence or absence of the outer head contour. We found that regardless of the presence of the outer head contour, infants preferred upright over inverted two-tone face images only when local features were highly visible (Experiment 1a). We showed that this upright preference disappeared when the contrast polarity of two-tone images was reversed (Experiment 1b), reflecting operation of face-specific mechanisms. In Experiment 2, we investigated whether motion affects infants' perception of faces in Mooney faces. We found that when the faces appeared to be rigidly moving, infants did show an upright preference in conditions of low visibility of local features (Experiment 2a). Again the preference disappeared when the contrast polarity of the image was reversed (Experiment 2b). Together, these results suggest that young infants have the ability to integrate fragmented image features to perceive faces from two-tone face images, especially if they are moving. This suggests that an interaction between motion and form rather than a purely motion-based process (e.g., structure from motion) facilitates infants' perception of faces in ambiguous two-tone images.  相似文献   

17.
Although 4-month-olds perceive continuity of an object's trajectory through occlusion, little is known about the information specifying an occluding surface at this age. We investigated this in 3 experiments involving 84 participants. Testing the claim that 5-month-olds are unable to perceive the Kanizsa figure as an occluding surface (Csibra, 2001), we demonstrated that 4-month-olds perceived trajectory continuity behind this figure providing its horizontal extent was small. We demonstrated that the presence of visible occluding edges or occlusion of background was insufficient to specify an occluding surface but that their combination was sufficient. Thus, beyond object deletion and accretion, both visible occluding edges and occlusion of background are necessary for perception of occluding surfaces at this age.  相似文献   

18.
Arcimboldo images induce the perception of faces when shown upright despite the fact that only nonfacial objects such as vegetables and fruits are painted. In the current study, we examined whether infants recognize a face in the Arcimboldo images by using the preferential looking technique and near-infrared spectroscopy (NIRS). In the first experiment, we measured looking preference between upright and inverted Arcimboldo images among 5- and 6-month-olds and 7- and 8-month-olds. We hypothesized that if infants perceive the Arcimboldo images as faces, they would prefer the upright images to the inverted ones. We found that only 7- and 8-month-olds significantly preferred upright images, suggesting that they could perceive the Arcimboldo images as faces. In the second experiment, we measured hemodynamic responses using NIRS. Based on the behavioral data, we hypothesized that 7- and 8-month-olds would show different neural activity for upright and inverted Arcimboldo images, as do adults. Therefore, we measured hemodynamic responses in 7- and 8-month-olds while they were looking at upright and inverted Arcimboldo images. Their responses were then compared with the baseline activation during the presentation of individual vegetables. We found that the concentration of oxyhemoglobin increased in the left temporal area during the presentation of the upright images compared with the baseline during the presentation of vegetables. The results of the two experiments suggest that (a) the ability to recognize the upright Arcimboldo images as faces develops at around 7 or 8 months of age and (b) processing of the upright Arcimboldo images is related to the left temporal area of the brain.  相似文献   

19.
Two theories of subjective contours are distinguished according to the interrelationship of subjective contours and subjective brightness effects. In one view, subjective contours are illusory brightness gradients generated from grouped local brightness effects. In another view, subjective contours are the edges of subjective forms created on the basis of gestalt factors; subjective brightness is a secondary consequence of form perception. Two experiments which use rating scales to separate judgments of subjective contour and subjective brightness are presented. The first shows that subjects may judge contour to be strong when there is no subjective brightness gradient. In the second, gestalt grouping factors are shown to be more important than factors which should influence brightness according to local effects theories. Both experiments support the view that subjective brightness occurs through interactions at the level of form perception.  相似文献   

20.
Illusory contours are not well understood, partially because a lack of physical substance complicates their specification via physical standards. One solution is to gauge illusory contours with respect to luminance-defined contours, which are easily quantified physically. Accordingly, we chose a metric (perceived contrast) that expresses illusory contour strength in terms of the physical contrast of luminance-defined contours. Using this metric, adult observers adjusted the contrast of a luminance-defined contour until it matched the perceived contrast of an illusory contour. Illusory contour length, inducer size, and inducer contrast all influenced illusory contour strength. The results are adequately explained via low-level visual processes. It appears that matching paradigms can be beneficial in quantitative studies of illusory contours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号