首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral–affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed.  相似文献   

2.
Contributions of memory circuits to language: the declarative/procedural model   总被引:19,自引:0,他引:19  
Ullman MT 《Cognition》2004,92(1-2):231-270
The structure of the brain and the nature of evolution suggest that, despite its uniqueness, language likely depends on brain systems that also subserve other functions. The declarative/procedural (DP) model claims that the mental lexicon of memorized word-specific knowledge depends on the largely temporal-lobe substrates of declarative memory, which underlies the storage and use of knowledge of facts and events. The mental grammar, which subserves the rule-governed combination of lexical items into complex representations, depends on a distinct neural system. This system, which is composed of a network of specific frontal, basal-ganglia, parietal and cerebellar structures, underlies procedural memory, which supports the learning and execution of motor and cognitive skills, especially those involving sequences. The functions of the two brain systems, together with their anatomical, physiological and biochemical substrates, lead to specific claims and predictions regarding their roles in language. These predictions are compared with those of other neurocognitive models of language. Empirical evidence is presented from neuroimaging studies of normal language processing, and from developmental and adult-onset disorders. It is argued that this evidence supports the DP model. It is additionally proposed that "language" disorders, such as specific language impairment and non-fluent and fluent aphasia, may be profitably viewed as impairments primarily affecting one or the other brain system. Overall, the data suggest a new neurocognitive framework for the study of lexicon and grammar.  相似文献   

3.
The Lateralized Linguistic Cerebellum: A Review and a New Hypothesis   总被引:16,自引:0,他引:16  
During the past 2 decades the collaboration across disciplines and the methodologic and conceptual advances of contemporary neuroscience have brought about a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Growing insights in the neuroanatomy of the cerebellum and its interconnections, evidence from functional neuroimaging and neurophysiological research, and advancements in clinical and experimental neuropsychology have established the view that the cerebellum participates in a much wider range of functions than conventionally accepted. This increase of insight has brought to the fore that the cerebellum modulates cognitive functioning of at least those parts of the brain to which it is reciprocally connected. This article reviews the recently acknowledged role of the cerebellum in cognition and addresses in more detail experimental and clinical data disclosing the modulatory role of the cerebellum in various non-motor language processes such as lexical retrieval, syntax, and language dynamics. In agreement with the findings indicating a topographical organization of the cerebellar structures involved in language pathology we advance the concept of a "lateralized linguistic cerebellum." In our view crossed cerebral diaschisis processes, reflecting a functional depression of supratentorial language areas due to reduced input via cerebellocortical pathways, might represent the relevant pathomechanism for linguistic deficits associated with cerebellar pathology.  相似文献   

4.
5.
Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some ultra-cognitive scientists assert that these experiments can never be of relevance to the study of cognition. Their reasoning reflects an adherence to a functionalist philosophy that arbitrarily and purposefully distinguishes mental information-processing systems from brain or brain-like operations. This article addresses whether data from properly conducted functional neuroimaging studies can inform and subsequently constrain the assumptions of theoretical cognitive models. The article commences with a focus upon the functionalist philosophy espoused by the ultra-cognitive scientists, contrasting it with the materialist philosophy that motivates both cognitive neuroimaging investigations and connectionist modelling of cognitive systems. Connectionism and cognitive neuroimaging share many features, including an emphasis on unified cognitive and neural models of systems that combine localist and distributed representations. The utility of designing cognitive neuroimaging studies to test (primarily) connectionist models of cognitive phenomena is illustrated using data from functional magnetic resonance imaging (fMRI) investigations of language production and episodic memory.  相似文献   

6.
Individual differences in second language (L2) aptitude have been assumed to depend upon a variety of cognitive and personality factors. Especially, the cognitive factor phonological working memory has been conceptualised as language learning device. However, strong associations between phonological working memory and L2 aptitude have been previously found in early-stage learners only, not in advanced learners. The current study aimed at investigating the behavioural and neurobiological predictors of advanced L2 learning. Our behavioural results showed that phonetic coding ability and empathy, but not phonological working memory, predict L2 pronunciation aptitude in advanced learners. Second, functional neuroimaging revealed this behavioural trait to be correlated with hemodynamic responses of the cerebral network of speech motor control and auditory-perceptual areas. We suggest that the acquisition of L2 pronunciation aptitude is a dynamic process, requiring a variety of neural resources at different processing stages over time.  相似文献   

7.
8.
The cognitive neuroscience of the cerebellum is now an established multidisciplinary field of investigation. This essay traces the historical evolution of this line of inquiry from an emerging field to its current status, with personal reflections over almost three decades on this journey of discovery. It pays tribute to early investigators who recognized the wider role of the cerebellum beyond motor control, traces the origins of new terms and concepts including the dysmetria of thought theory, the universal cerebellar transform, and the cerebellar cognitive affective syndrome, and places these developments within the broader context of the scientific efforts of a growing community of cerebellar cognitive neuroscientists. This account considers the converging evidence from theoretical, anatomical, physiological, clinical, and functional neuroimaging approaches that have resulted in the transition from recognizing the cerebellar incorporation into the distributed neural circuits subserving cognition and emotion, to a hopeful new era of treatment of neurocognitive and neuropsychiatric manifestations of cerebellar diseases, and to cerebellar-based interventions for psychiatric disorders.  相似文献   

9.
Cognitive neuroscience of aging: contributions of functional neuroimaging   总被引:10,自引:0,他引:10  
By revealing how brain activity during cognitive performance changes as a function of aging, studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are contributing to the development of a new discipline of Cognitive Neuroscience of Aging. This article reviews functional neuroimaging studies of cognitive aging in the domains of visual perception, episodic memory encoding and semantic memory retrieval, episodic memory retrieval, implicit memory, and working memory. The most consistent finding of these studies was that brain activity tends to be less lateralized in older adults than in younger adults. This finding is conceptualized in terms of a model called Hemispheric Asymmetry Reduction in Old Adults (HAROLD). According to a compensation hypothesis, bihemispheric involvement could help counteract age-related neurocognitive decline, whereas, according to a dedifferentiation hypothesis, it reflects a difficulty in recruiting specialized neural mechanisms.  相似文献   

10.
The study of illiterate subjects, which for specific socio-cultural reasons did not have the opportunity to acquire basic reading and writing skills, represents one approach to study the interaction between neurobiological and cultural factors in cognitive development and the functional organization of the human brain. In addition the naturally occurring illiteracy may serve as a model for studying the influence of alphabetic orthography on auditory-verbal language. In this paper we have reviewed some recent behavioral and functional neuroimaging data indicating that learning an alphabetic written language modulates the auditory-verbal language system in a non-trivial way and provided support for the hypothesis that the functional architecture of the brain is modulated by literacy. We have also indicated that the effects of literacy and formal schooling is not limited to language related skills but appears to affect also other cognitive domains. In particular, we indicate that formal schooling influences 2D but not 3D visual naming skills. We have also pointed to the importance of using ecologically relevant tasks when comparing literate and illiterate subjects. We also demonstrate the applicability of a network approach in elucidating differences in the functional organization of the brain between groups. The strength of such an approach is the ability to study patterns of interactions between functionally specialized brain regions and the possibility to compare such patterns of brain interactions between groups or functional states. This complements the more commonly used activation approach to functional neuroimaging data, which characterize functionally specialized regions, and provides important data characterizing the functional interactions between these regions.  相似文献   

11.
With a tradition reliance on verbal paradigms cognitive psychology has repeatedly rediscovered the centrality of verbal processes in the cognitive representation of the world. Frequently it has been considered that non-speaking groups offer the proof of such psychological theories. Deaf people, because of their apparently poor memory, retardation in reading, relative lack of speech, yet cognitive viability, have offered an ideal test population for cognitive paradigs. Unfortunately deaf people turn out not to be a non linguistic control. We have now discovered sign language—a visual, spatial representation form used naturally by profoundly deaf people. This apparently offers the key the deaf people's cognition without speech. This paper describes some aspects of what we know of deaf people and their language, critically examines some of the evidence for sign representation in memory, and discusses the methodological problems to be faced by anyone searching for conclusive evidence on deaf people's working memory. Despite the attractiveness of ‘sings for words’ in cognition, this paper argues that the evidences is weak and signs may not be equated easily with words.  相似文献   

12.
It is clear that the left inferior frontal gyrus (LIFG) contributes in some fashion to sentence processing. While neuroimaging and neuropsychological evidence support a domain-general working memory function, recent neuroimaging data show that particular subregions of the LIFG, particularly the pars triangularis (pTri), show selective activation for sentences relative to verbal working memory and cognitive control tasks. These data suggest a language-specific function rather than a domain-general one. To resolve this apparent conflict, I propose separating claims of domain-generality and specificity independently for computations and representations—a given brain region may respond to a specific representation while performing a general computation over that representation, one shared with other systems. I hypothesize that the pTri underlies a language-specific working memory system, comprised of general memory retrieval/attention operations specialized for syntactic representations. There is a parallelism of top-down retrieval function among the phonological and semantic levels, localized to the pars opercularis and pars orbitalis, respectively. I further explore the idea of how such a system emerges in the human brain through the framework of neuronal retuning: the “borrowing” of domain-general mechanisms for language, either in evolution or development. The empirical data appear to tentatively support a developmental account of language-specificity in the pTri, possibly through connections to the posterior superior temporal sulcus (pSTS), a region that is both anatomically distinct for humans and functionally essential for language. Evidence of representational response specificity obtained from neuroimaging studies is useful in understanding how cognition is implemented in the brain. However, understanding the shared computations across domains and neural systems is necessary for a fuller understanding of this problem, providing potential answers to questions of how specialized systems, such as language, are implemented in the brain.  相似文献   

13.
Recent neuroimaging studies of language processing are examining the neural substrate of phonology because of its critical role in mapping sound information onto higher levels of language processing (e.g., words) as well as providing codes in which verbal information can be temporarily stored in working memory. However, the precise role of the inferior frontal cortex in spoken and written phonological tasks has remained elusive. Although lesion studies have indicated the presence of selective deficits in phonological processing, the location of lesions underlying these impairments has not revealed a consistent pattern. Despite efforts to refine methods and tasks, functional neuroimaging studies have also revealed variability in activation patterns. Reanalysis of evidence from these neuroimaging studies suggests that there are functional subregions within the inferior frontal gyrus that correspond to specific components of phonological processing (e.g., orthographic to phonological conversion in reading, and segmentation in speech).  相似文献   

14.
Hemispheric asymmetry reduction in older adults: the HAROLD model   总被引:27,自引:0,他引:27  
A model of the effects of aging on brain activity during cognitive performance is introduced. The model is called HAROLD (hemispheric asymmetry reduction in older adults), and it states that, under similar circumstances, prefrontal activity during cognitive performances tends to be less lateralized in older adults than in younger adults. The model is supported by functional neuroimaging and other evidence in the domains of episodic memory, semantic memory, working memory, perception, and inhibitory control. Age-related hemispheric asymmetry reductions may have a compensatory function or they may reflect a dedifferentiation process. They may have a cognitive or neural origin, and they may reflect regional or network mechanisms. The HAROLD model is a cognitive neuroscience model that integrates ideas and findings from psychology and neuroscience of aging.  相似文献   

15.
Gruber O  Goschke T 《Acta psychologica》2004,115(2-3):105-121
In this theoretical paper, we review findings from a series of recent behavioral and functional neuroimaging studies of working memory and executive control which provide evidence for the following theses: 1. Working memory in humans is represented by two brain systems which differ from each other with respect to their functional-neuroanatomical organization and probably also with respect to their evolutionary origin. 2. One of these brain systems relies on prefronto-parietal and prefronto-temporal cortical networks that presumably also mediate attentional selection by the top-down modulation of domain-specific sensory association areas towards behaviorally relevant information. 3. The other system is implemented by mainly left-hemispheric premotor and parietal brain regions which to a greater part also underlie language functions and which may also be involved in the retrieval and maintenance of verbal goal representations during advance preparation for task switches. 4. Context-sensitive behavioral adaptation is supported by a complementary mechanism for the detection of conflicts and for the triggering of cognitive control processes that relies on parts of the medial frontal cortex. Based on these empirical results reported in the literature we propose a neurocognitive model of executive control according to which the human ability to flexibly adapt to changing behavioral requirements, i.e. executive control, depends on dynamic and context-sensitive interactions between these brain systems.  相似文献   

16.
The first two decades of cognitive neuroimaging research have provided a constant increase of the knowledge about the neural organization of cognitive processes. Many cognitive functions (e.g.working memory) can now be associated with particular neural structures, and ongoing research promises to clarify this picture further, providing a new mapping between cognitive and neural function. The main goal of this paper is to outline conceptual issues that are particularly important in the context of imaging changes in neural function through recovery process. This review focuses primarily on studies made in stroke and traumatic brain injury patients, but most of the issues raised here are also relevant to studies using other acquired brain damages. Finally, we summarize aset of methodological issues related to functional neuroimaging that are relevant for the study ofneural plasticity and recovery after rehabilitation. Deceased  相似文献   

17.
There needs to be more crosstalk between the lesion and functional neuroimaging memory literatures. This is illustrated by a discussion of episode and fact encoding. The lesion literature suggests several hypotheses about which brain regions underlie the storage of episode and fact information, which can be explored by functional neuroimaging. These hypotheses have been underexplored because neuroimaging studies of encoding have been insufficiently hypothesis-driven and have not controlled encoding-related processes sufficiently well to allow clear interpretations of results to be made. Nevertheless, there is good evidence that certain kinds of associative encoding and/or consolidation are sufficient to activate the medial temporal lobes, and preliminary evidence that some kinds of associative priming may reduce activation of this region. It remains to be proved that attentional orienting to certain kinds of novel information activates the medial temporal lobes. Evidence is growing that the HERA model, developed from neuroimaging rather than lesion data, requires modification and that frontal cortex encoding activations are probably caused by executive processes that are important in effortful memory processing. Neuroimaging studies allow the detection of encoding-related activations in previously unexpected brain regions (e.g. parietal lobes) and, in turn, these findings can be explored with lesion studies.  相似文献   

18.
There needs to be more crosstalk between the lesion and functional neuroimaging memory literatures. This is illustrated by a discussion of episode and fact encoding. The lesion literature suggests several hypotheses about which brain regions underlie the storage of episode and fact information, which can be explored by functional neuroimaging. These hypotheses have been underexplored because neuroimaging studies of encoding have been insufficiently hypothesis-driven and have not controlled encoding-related processes sufficiently well to allow clear interpretations of results to be made. Nevertheless, there is good evidence that certain kinds of associative encoding and/or consolidation are sufficient to activate the medial temporal lobes, and preliminary evidence that some kinds of associative priming may reduce activation of this region. It remains to be proved that attentional orienting to certain kinds of novel information activates the medial temporal lobes. Evidence is growing that the HERA model, developed from neuroimaging rather than lesion data, requires modification and that frontal cortex encoding activations are probably caused by executive processes that are important in effortful memory processing. Neuroimaging studies allow the detection of encoding-related activations in previously unexpected brain regions (e.g. parietal lobes) and, in turn, these findings can be explored with lesion studies.  相似文献   

19.
The Occipital Cortex in the Blind   总被引:1,自引:0,他引:1  
ABSTRACT— Studying the brains of blind individuals provides a unique opportunity to investigate how the brain changes and adapts in response to afferent (input) and efferent (output) demands. We discuss evidence suggesting that regions of the brain normally associated with the processing of visual information undergo remarkable dynamic change in response to blindness. These neuroplastic changes implicate not only processing carried out by the remaining senses but also higher cognitive functions such as language and memory. A strong emphasis is placed on evidence obtained from advanced neuroimaging techniques that allow researchers to identify areas of human brain activity, as well as from lesion approaches (both reversible and irreversible) to address the functional relevance and role of these activated areas. A possible mechanism and conceptual framework for these physiological and behavioral changes is proposed.  相似文献   

20.
Sex-related differences have been reported for performance and neural substrates on some working memory measures that carry a high cognitive load, including the popular n-back neuroimaging paradigm. Despite some evidence of a sex effect on the task, the influence of sex on performance represents a potential confound in neuroimaging research. The present study investigated sex-related differences in verbal, spatial, and common object versions of the high cognitive load "n-back" working memory task. Eighteen male and 18 female undergraduates completed all 3 versions of the task. A mixed ANOVA, with Sex (male and female) as the between-subjects factor and Condition (verbal, spatial, and object) as the within-subjects repeated measure revealed that males were significantly more accurate than females on the spatial and object versions of the n-back task and performed equivalently to females on the verbal version of the task. Although the expected female advantage for verbal working memory was not found using this effortful n-back task, these results support a male advantage for high cognitive load spatial and object working memory. Future research should take into account the influence of sex on performance of the n-back task, and examine sex-related differences in working memory using other paradigms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号