首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Speakers convey meaning not only through words, but also through gestures. Although children are exposed to co-speech gestures from birth, we do not know how the developing brain comes to connect meaning conveyed in gesture with speech. We used functional magnetic resonance imaging (fMRI) to address this question and scanned 8- to 11-year-old children and adults listening to stories accompanied by hand movements, either meaningful co-speech gestures or meaningless self-adaptors. When listening to stories accompanied by both types of hand movement, both children and adults recruited inferior frontal, inferior parietal, and posterior temporal brain regions known to be involved in processing language not accompanied by hand movements. There were, however, age-related differences in activity in posterior superior temporal sulcus (STSp), inferior frontal gyrus, pars triangularis (IFGTr), and posterior middle temporal gyrus (MTGp) regions previously implicated in processing gesture. Both children and adults showed sensitivity to the meaning of hand movements in IFGTr and MTGp, but in different ways. Finally, we found that hand movement meaning modulates interactions between STSp and other posterior temporal and inferior parietal regions for adults, but not for children. These results shed light on the developing neural substrate for understanding meaning contributed by co-speech gesture.  相似文献   

2.
Using Dynamic Causal Modeling (DCM) and functional magnetic resonance imaging (fMRI), we examined effective connectivity between three left hemisphere brain regions (inferior frontal gyrus, inferior parietal lobule, fusiform gyrus) and bilateral medial frontal gyrus in 12 children with reading difficulties (M age=12.4, range: 8.11-14.10) and 12 control children (M age=12.3, range: 8.9-14.11) during rhyming judgments to visually presented words. More difficult conflicting trials either had similar orthography but different phonology (e.g. pint-mint) or similar phonology but different orthography (e.g. jazz-has). Easier non-conflicting trials had similar orthography and phonology (e.g. dime-lime) or different orthography and phonology (e.g. staff-gain). The modulatory effect from left fusiform gyrus to left inferior parietal lobule was stronger in controls than in children with reading difficulties only for conflicting trials. Modulatory effects from left fusiform gyrus and left inferior parietal lobule to left inferior frontal gyrus were stronger for conflicting trials than for non-conflicting trials only in control children but not in children with reading difficulties. Modulatory effects from left inferior frontal gyrus to inferior parietal lobule, from medial frontal gyrus to left inferior parietal lobule, and from left inferior parietal lobule to medial frontal gyrus were positively correlated with reading skill only in control children. These findings suggest that children with reading difficulties have deficits in integrating orthography and phonology utilizing left inferior parietal lobule, and in engaging phonological rehearsal/segmentation utilizing left inferior frontal gyrus possibly through the indirect pathway connecting posterior to anterior language processing regions, especially when the orthographic and phonological information is conflicting.  相似文献   

3.
This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions confined to the parietal lobe. We compared Speech with non-communicative repetitive tongue movements (Tongue). The data were analyzed with both univariate contrasts between conditions and probabilistic independent component analysis (ICA). The former indicated decreased activity of left IPC during Speech relative to Tongue. However, the ICA revealed a Speech component in which there was correlated activity between left IPC, frontal and temporal cortices known to be involved in language. Therefore, although net synaptic activity throughout the left IPC may not increase above baseline conditions during Speech, one or more local systems within this region are involved, evidenced by the correlated activity with other language regions.  相似文献   

4.
Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left superior temporal gyrus, which was due to greater developmental increases in English than in Chinese. Moreover, we found that higher skill only in English children was correlated with greater activation in left inferior parietal lobule. These findings suggest that the regions associated with phonological processing are essential in English reading development. We also found greater developmental increases in English than in Chinese in left inferior temporal gyrus, suggesting refinement of this region for fine‐grained word form recognition. In contrast, greater developmental increases in Chinese than in English were found in right middle occipital gyrus, suggesting the importance of holistic visual‐orthographic analysis in Chinese reading acquisition. Our results suggest that the brain adapts to the special features of the orthography by engaging relevant brain regions to a greater degree over development.  相似文献   

5.
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We hypothesized that L-Dopa would decrease FC due to restriction of the semantic network. During two test sessions (placebo and L-Dopa) each participant performed two fMRI runs, involving phonological and semantic processing. A number of brain regions commonly activated by the two tasks were chosen as regions if interest: left inferior frontal, left posterior temporal and left fusiform gyri, and left parietal cortex. FC was calculated and further analyzed for effects of either the drug or task. No main effect for drug was found. A significant main effect for task was found, with a greater average correlation for the phonological task than for the semantic task. These findings suggest that language areas are activated in a more synchronous manner for phonological than for semantic tasks. This may relate to the fact that phonological processes are mediated to a greater extent within language areas, whereas semantic tasks likely require greater interaction outside of the language areas. Alternatively, this may be due to differences in the attentional requirements of the two tasks.  相似文献   

6.
When we behave according to rules and instructions, our brains interpret abstract representations of what to do and transform them into actual behavior. In order to investigate the neural mechanisms behind this process, we devised an fMRI experiment that explicitly isolated rule interpretation from rule encoding and execution. Our results showed that a specific network of regions (including the left rostral prefrontal cortex, the caudate nucleus, and the bilateral posterior parietal cortices) is responsible for translating rules into executable form. An analysis of activation patterns across conditions revealed that the posterior parietal cortices represent a mental template for the task to perform, that the inferior parietal gyrus and the caudate nucleus are responsible for instantiating the template in the proper context, and that the left rostral prefrontal cortex integrates information across complex relationships.  相似文献   

7.
动词论元结构复杂性表现在论元数量、论元范畴选择模式、题元角色指派模式和映射方式四个方面。大部分实证研究表明, 更多的论元数量、选择性论元范畴、选择性题元角色指派以及非典型映射, 使动词论元结构加工的认知神经机制更复杂。多论元加工功能脑区主要涉及左侧额下回和外侧裂周后部; 选择性论元范畴加工功能脑区主要涉及左侧额下回、额叶中后部、颞上回和颞叶中后部; 选择性题元角色指派加工功能脑区主要涉及外侧裂周后部、左侧额叶中后部和额下回; 非典型映射加工功能脑区主要涉及左侧额下回、颞上回、颞中回和颞叶后部。左侧额下回可能涉及初始句法加工、动词次范畴确定、句法移位和非宾格动词语义加工, 左侧额叶中后部可能涉及初始句法加工和动词次范畴确定, 左侧颞上回和颞叶中后部可能涉及表层句法加工和表层论元句法-语义整合, 外侧裂周后部可能涉及论元语义表征。动词论元结构加工过程和动词词汇特征表明, 复杂性某些方面存在交互作用。动词论元结构复杂性与加工难易的对应关系、复杂性加工难度层级和交互作用的认知神经机制以及汉语动词论元结构复杂性加工认知神经机制等议题, 有待进一步探讨。  相似文献   

8.
Lesion analysis of the brain areas involved in language comprehension   总被引:20,自引:0,他引:20  
The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which lesioned brain areas might affect language comprehension. Sixty-four chronic left hemisphere stroke patients were evaluated on 11 subtests of the Curtiss-Yamada Comprehensive Language Evaluation - Receptive (CYCLE-R; Curtiss, S., & Yamada, J. (1988). Curtiss-Yamada Comprehensive Language Evaluation. Unpublished test, UCLA). Eight right hemisphere stroke patients and 15 neurologically normal older controls also participated. Patients were required to select a single line drawing from an array of three or four choices that best depicted the content of an auditorily-presented sentence. Patients' lesions obtained from structural neuroimaging were reconstructed onto templates and entered into a voxel-based lesion-symptom mapping (VLSM; Bates, E., Wilson, S., Saygin, A. P., Dick, F., Sereno, M., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448-450.) analysis along with the behavioral data. VLSM is a brain-behavior mapping technique that evaluates the relationships between areas of injury and behavioral performance in all patients on a voxel-by-voxel basis, similar to the analysis of functional neuroimaging data. Results indicated that lesions to five left hemisphere brain regions affected performance on the CYCLE-R, including the posterior middle temporal gyrus and underlying white matter, the anterior superior temporal gyrus, the superior temporal sulcus and angular gyrus, mid-frontal cortex in Brodmann's area 46, and Brodmann's area 47 of the inferior frontal gyrus. Lesions to Broca's and Wernicke's areas were not found to significantly alter language comprehension on this particular measure. Further analysis suggested that the middle temporal gyrus may be more important for comprehension at the word level, while the other regions may play a greater role at the level of the sentence. These results are consistent with those seen in recent functional neuroimaging studies and offer complementary data in the effort to understand the brain areas underlying language comprehension.  相似文献   

9.
Position emission tomography was used to investigate whether retrieval of perceptual knowledge from long-term memory activates unique cortical regions associated with the modality and/or attribute type retrieved. Knowledge about the typical color, size, and sound of common objects and animals was probed, in response to written words naming the objects. Relative to a nonsemantic control task, all the attribute judgments activated similar left temporal and frontal regions. Visual (color, size) knowledge selectively activated the right posterior inferior temporal (PIT) cortex, whereas sound judgments elicited selective activation in the left posterior superior temporal gyrus and the adjacent parietal cortex. All of the attribute judgments activated a left PIT region, but color retrieval generated more activation in this area. Size judgments activated the right medial parietal cortex. These results indicate that the retrieval of perceptual semantic information activates not only a general semantic network, but also cortical areas specialized for the modality and attribute type of the knowledge retrieved.  相似文献   

10.
Patients with primary progressive aphasia (PPA) vary considerably in terms of which brain regions are impacted, as well as in the extent to which syntactic processing is impaired. Here we review the literature on the neural basis of syntactic deficits in PPA. Structural and functional imaging studies have most consistently associated syntactic deficits with damage to left inferior frontal cortex. Posterior perisylvian regions have been implicated in some studies. Damage to the superior longitudinal fasciculus, including its arcuate component, has been linked with syntactic deficits, even after gray matter atrophy is taken into account. These findings suggest that syntactic processing depends on left frontal and posterior perisylvian regions, as well as intact connectivity between them. In contrast, anterior temporal regions, and the ventral tracts that link frontal and temporal language regions, appear to be less important for syntax, since they are damaged in many PPA patients with spared syntactic processing.  相似文献   

11.
利用功能性磁共振成像(fMRI)技术探讨文盲和非文盲汉字字形和语音加工脑机制的差异。实验1使用汉字字形和图形比较了中国人文盲和非文盲字形加工过程脑机制的左侧差异。实验2使用汉字语音和纯音比较了文盲和非文盲语音加工过程脑机制的双侧差异。结果表明文盲与非文盲汉字字形和语音加工脑机制不同,且非文盲的脑活动强。  相似文献   

12.
Recent anatomo‐clinical correlation studies have extended to the superior temporal gyrus, the right hemisphere lesion sites associated with the left unilateral spatial neglect, in addition to the traditional posterior‐inferior‐parietal localization of the responsible lesion (supramarginal gyrus, at the temporo‐parietal junction). The study aimed at teasing apart, by means of repetitive transcranial magnetic stimulation (rTMS), the contribution of the inferior parietal lobule (angular gyrus versus supramarginal gyrus) and of the superior temporal gyrus of the right hemisphere, in making judgments about the mid‐point of a horizontal line, a widely used task for detecting and investigating spatial neglect. rTMS trains at 25 Hz frequency were delivered over the inferior parietal lobule (angular gyrus and supramarginal gyrus), the superior temporal gyrus and the anterior parietal lobe of the right hemisphere, in 10 neurologically unimpaired participants, performing a line bisection judgment task. rTMS of the inferior parietal lobule at the level of the supramarginal gyrus brought about a rightward error in the bisection judgment, ipsilateral to the side of the rTMS, with stimulation over the other sites being ineffective. The neural correlates of computing the mid‐point of a horizontal segment include the right supramarginal gyrus in the inferior parietal lobule and do not extend to the angular gyrus and the superior temporal gyrus. These rTMS data in unimpaired subjects constrain the evidence from lesion studies in brain‐damaged patients, emphasizing the major role of a subset of relevant regions.  相似文献   

13.
ERPs were recorded from deaf and hearing native signers and from hearing subjects who acquired ASL late or not at all as they viewed ASL signs that formed sentences. The results were compared across these groups and with those from hearing subjects reading English sentences. The results suggest that there are constraints on the organization of the neural systems that mediate formal languages and that these are independent of the modality through which language is acquired. These include different specializations of anterior and posterior cortical regions in aspects of grammatical and semantic processing and a bias for the left hemisphere to mediate aspects of mnemonic functions in language. Additionally, the results suggest that the nature and timing of sensory and language experience significantly impact the development of the language systems of the brain. Effects of the early acquisition of ASL include an increased role for the right hemisphere and for parietal cortex and this occurs in both hearing and deaf native signers. An increased role of posterior temporal and occipital areas occurs in deaf native signers only and thus may be attributable to auditory deprivation.  相似文献   

14.
Recent neuroimaging studies and neuropsychological data suggest that there are regions in posterior auditory cortex that participate both in speech perception and speech production. An outstanding question is whether the same neural regions support both perception and production or whether there exist discrete cortical fields subserving these functions. Previous neurophysiological studies suggest that there is indeed regional overlap between these systems, but those studies used a rehearsal task to assess production. The present study addressed this question in an event-related fMRI experiment in which subjects listened to speech and in separate trials, performed a covert object naming task. Single subject analysis revealed regions of coactivation for speech perception and production in the left posterior superior temporal sulcus (pSTS), left area Spt (a region in the Sylvian fissure at the parietal-temporal boundary), and left inferior frontal gyrus. These results are consistent with lesion data and previous physiological data indicating that posterior auditory cortex plays a role in both reception and expression of speech. We discuss these findings within the context of a neuroanatomical framework that proposes these neural sites are a part of an auditory-motor integration system.  相似文献   

15.
Yang J  Shu H  Bi Y  Liu Y  Wang X 《Brain and language》2011,119(3):167-174
Embodied semantic theories suppose that representation of word meaning and actual sensory-motor processing are implemented in overlapping systems. According to this view, association and dissociation of different word meaning should correspond to dissociation and association of the described sensory-motor processing. Previous studies demonstrate that although tool-use actions and hand actions have overlapping neural substrates, tool-use actions show greater activations in frontal–parietal–temporal regions that are responsible for motor control and tool knowledge processing. In the present study, we examined the association and the dissociation of the semantic representation of tool-use verbs and hand action verbs. Chinese verbs describing tool-use or hand actions without tools were included, and a passive reading task was employed. All verb conditions showed common activations in areas of left middle frontal gyrus, left inferior frontal gyrus (BA 44/45) and left inferior parietal lobule relative to rest, and all conditions showed significant effects in premotor areas within the mask of hand motion effects. Contrasts between tool-use verbs and hand verbs demonstrated that tool verbs elicited stronger activity in left superior parietal lobule, left middle frontal gyrus and left posterior middle temporal gyrus. Additionally, psychophysiological interaction analyses demonstrated that tool verbs indicated greater connectivity among these regions. These results suggest that the brain regions involved in tool-use action processing also play more important roles in tool-use verb processing and that similar systems may be responsible for word meaning representation and actual sensory-motor processing.  相似文献   

16.
People with tumours in specific brain sites might face difficulties in tasks with different linguistic material. Previous lesion-symptom mapping studies (VLSM) demonstrated that people with tumours in posterior temporal regions have more severe linguistic impairments. However, to the best of our knowledge, preoperative performance and lesion location on tasks with different linguistic stimuli have not been examined. In the present study, we performed VLSM on 52 people with left gliomas to examine whether tumour distribution differs depending on the tasks of the Aachen Aphasia Test. The VLSM analysis revealed that single-word production (e.g. object naming) was associated with the inferior parietal lobe and that compound and sentence production were additionally associated with posterior temporal gyri. Word repetition was affected in people with tumours in inferior parietal areas, whereas sentence repetition was the only task to be associated with frontal regions. Subcortically, word and sentence production were found to be affected in people with tumours reaching the arcuate fasciculus, and compound production was primarily associated with tumours affecting the inferior longitudinal and inferior fronto-occipital fasciculus. Our work shows that tasks with linguistic stimuli other than single-word naming (e.g. compound and sentence production) relate to additional cortical and subcortical brain areas. At a clinical level, we show that tasks that target the same processes (e.g. repetition) can have different neural correlates depending on the linguistic stimuli used. Also, we highlight the importance of left temporoparietal areas.  相似文献   

17.
研究结合静息态全脑功能连接密度和基于种子点的功能连接(FC)分析考察了藏汉双语者汉语(L2)阅读各子能力(细节捕捉和推理判断)的固有脑功能组织特点。结果发现左侧额下回—左侧颞上回和右侧舌回—右侧中央前回之间的FC值均与细节捕捉题得分和推理判断题得分呈显著正相关,但是左侧额下回—右侧顶下小叶之间的FC值只与推理判断题得分呈显著正相关。表明藏汉双语者汉语阅读各子能力之间既有重叠的又有不同的功能连接通路。  相似文献   

18.
We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing.  相似文献   

19.
Our perception about the representation and processing of concrete and abstract concepts is based on the fact that concrete words are highly imagined and remembered faster than abstract words. In order to explain the processing differences between abstract and concrete concepts, various theories have been proposed, yet there is no unanimous consensus about its neural implication. The present study investigated the processing of concrete and abstract words during an orthography judgment task (implicit semantic processing) using functional magnetic resonance imaging to validate the involvement of the neural regions. Relative to non-words, both abstract and concrete words show activation in the regions of bilateral hemisphere previously associated with semantic processing. The common areas (conjunction analyses) observed for abstract and concrete words are bilateral inferior frontal gyrus (BA 44/45), left superior parietal (BA 7), left fusiform gyrus and bilateral middle occipital. The additional areas for abstract words were noticed in bilateral superior temporal and bilateral middle temporal region, whereas no distinct region was noticed for concrete words. This suggests that words with abstract concepts recruit additional language regions in the brain.  相似文献   

20.
语义整合帮助人们在阅读理解中将小信息块整合成一个完整、连贯的句子意义表达, 是阅读理解中非常重要的认知过程。通过对比40多篇句子加工相关的脑机制研究, 发现左侧额下回在fMRI研究中是参与语义整合加工激活概率最高的区域, 而颞叶及后部是MEG研究中激活概率最高的区域。另外, 左侧额下回是如何参与语义整合、它在内隐和外显语义整合中的机制是否相同、以及这种整合加工与一般的控制性加工、词汇启动的关系都是研究者广泛关注的问题。本文对上述问题进行了详细的综述和讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号