首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research has uncovered three primary cues that influence spatial memory organization:egocentric experience, intrinsic structure (object defined), and extrinsic structure (environment defined). In the present experiments, we assessed the relative importance of these cues when all three were available during learning. Participants learned layouts from two perspectives in immersive virtual reality. In Experiment 1, axes defined by intrinsic and extrinsic structures were in conflict, and learning occurred from two perspectives, each aligned with either the intrinsic or the extrinsic structure. Spatial memories were organized around a reference direction selected from the first perspective, regardless of its alignment with intrinsic or extrinsic structures. In Experiment 2, axes defined by intrinsic and extrinsic structures were congruent, and spatial memories were organized around reference axes defined by those congruent structures, rather than by the initially experienced view. The findings are discussed in the context of spatial memory theory as it relates to real and virtual environments.  相似文献   

2.
Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective taking when recalling touched objects was best from perspectives aligned with visually-defined axes, providing evidence for cross-sensory reference frame transfer. These findings advance spatial memory theory by demonstrating that multimodal spatial information can be integrated within a common spatial representation.  相似文献   

3.
Environmental slant is known to improve navigation performance in humans and other animals. Successful navigation relies on accurate spatial orientation and accurate spatial memory retrieval. The role of environmental slant in spatial orientation has been established, but its role in spatial memory organization is unclear. Two experiments using immersive virtual reality explored the influence of environmental slant on reference frame selection during spatial learning. Participants studied object locations on a sloped surface. When no additional environmental cues were present (Experiment 1), spatial memory retrieval was best from the studied perspective aligned with the direction of slope. When the direction of slope was placed in competition with the axis of the surrounding room (Experiment 2), spatial memory retrieval was best from the initially studied perspective. The latter finding contrasts with the results of research showing that pigeons preferentially rely on environmental slant over room shape. The findings are discussed in the context of spatial memory theory.  相似文献   

4.
Multiple spatial cues are utilized to orient with respect to the environment, but it remains unclear why feature (i.e., objects in the environment) and geometric (i.e., shape of the environment) cues are differentially influenced by enclosure size, and the extent to which local (i.e., wall lengths and corner angles) and global (i.e., principal axis of space) geometric cues are influenced by enclosure size. In the present study, we investigated the extent to which environmental size influenced the use of corner angle (i.e., a local geometric cue) and the principal axis of space (i.e., a global geometric cue) for reorientation. We developed an orientation task that allowed the manipulation of enclosure size during training and the isolation of the use of the principal axis of space during testing. Participants were trained to respond to a location in either a small or a large trapezoid-shaped enclosure uniquely specified by both local (i.e., wall lengths and corner angles) and global (i.e., principal axis of space) geometric cues. During testing, we presented both groups with a small and large rectangle (to assess the use of principal axis of space) and a small and large parallelogram (to asses relative use of corner angles and the principal axis of space when in conflict). Enclosure size influenced the relative use of corner angles but not of the principal axis of space. Results suggest that corner angles function like features and that changes in the use of feature cues are the source of the relative reliance on feature and geometric cues during changes of enclosure size.  相似文献   

5.
Collaborative inhibition refers to the finding that pairs of people working together to retrieve information from memory—a collaborative group—often retrieve fewer unique items than do nominal pairs, who retrieve individually but whose performance is pooled. Two experiments were designed to explore whether collaborative inhibition, which has heretofore been studied using traditional memory stimuli such as word lists, also characterizes spatial memory retrieval. In the present study, participants learned a layout of objects and then reconstructed the layout from memory, either individually or in pairs. The layouts created by collaborative pairs were more accurate than those created by individuals, but less accurate than those of nominal pairs, providing evidence for collaborative inhibition in spatial memory retrieval. Collaborative inhibition occurred when participants were allowed to dictate the order of object placement during reconstruction (Exp. 1), and also when object order was imposed by the experimenter (Exp. 2), which was intended to disrupt the retrieval processes of pairs as well as of individuals. Individual tests of perspective taking indicated that the underlying representations of pair members were no different than those of individuals; in all cases, spatial memories were organized around a reference frame aligned with the studied perspective. These results suggest that inhibition is caused by the product of group recall (i.e., seeing a partner’s object placement), not by the process of group recall (i.e., taking turns choosing an object to place). The present study has implications for how group performance on a collaborative spatial memory task may be optimized.  相似文献   

6.
7.
Locomotion,incidental learning,and the selection   总被引:2,自引:0,他引:2  
In three experiments, we examined the effects of locomotion and incidental learning on the formation of spatial memories. Participants learned the locations of objects in a room and then made judgments of relative direction, using their memories (e.g., "Imagine you are standing at the clock, facing the jar. Point to the book"). The experiments manipulated the number of headings experienced, the amount of interaction with the objects, and whether the participants were informed that their memories of the layout would be tested. When participants were required to maintain a constant body orientation during learning (Experiment 1), they represented the layout in terms of a single reference direction parallel to that orientation. When they were allowed to move freely in the room (Experiment 2), they seemed to use two orthogonal reference axes aligned with the walls of the enclosing room. Extensive movement under incidental learning conditions (Experiment 3) yielded a mixture of these two encoding strategies across participants. There was no evidence that locomotion, interaction with objects, or incidental learning led to the formation of spatial memories that differed from those formed from static viewing.  相似文献   

8.
A substantial amount of empirical and theoretical debate remains concerning the extent to which an ability to orient with respect to the environment is determined by global (i.e., principal axis of space), local (i.e., wall lengths, angles), and/or view-based (i.e., stored representation) accounts. We developed an orientation task that allowed the manipulation of the reliability of the principal axis of space (i.e., searching at the egocentric left- and/or right-hand side of the principal axis) between groups while maintaining goal distance from the principal axis, local cues specifying the goal location (i.e., short wall left, short wall right, and obtuse angle), and visual aspects of the goal location consistent across groups. Control and test trials revealed that participants trained with a reliable principal axis of space utilized both global and local geometric cues, whereas those trained with an unreliable principal axis of space utilized only local geometric cues. Results suggest that both global and local geometric cues are utilized for reorientation and that the reliability of the principal axis of an enclosure differentially influences the use of geometric cues. Such results have implications for purely global-based, purely local-based, and purely view-based matching theoretical accounts of geometry learning and provide evidence for a unified orientation process.  相似文献   

9.
被试在矩形房间中从两个不同的观察点学习物体场景并在多个朝向上对物体形成的空间关系进行判断,通过控制场景中物体主要内在轴相对于环境结构(房间和地毯)的方向和被试的学习顺序,探讨被试在场景空间表征中采用何种参照系和参照系选取时的影响因素。两个实验结果发现:(1)内在参照系(intrinsic reference systems)和环境参照系均可以用于物体场景的表征,两类参照系之间的关系却是影响被试物体场景表征时参照系选取的重要因素,即当内在参照系与环境参照系方向一致时,被试无论从哪个朝向学习,都选择从垂直于内在参照系和环境参照系的朝向进行表征。反之,当二者方向不一致时,表征时参照系的选择取决于被试的学习经历;(2)无论内在参照系与环境参照系方向是否一致,物体场景本身内在结构的规则性都能够促进空间记忆,即内在结构的规则性既有助于准确编码物体的相对位置,也有助于提高空间关系判断的准确性。  相似文献   

10.
Four experiments investigated the conditions contributing to sensorimotor alignment effects (i.e., the advantage for spatial judgments from imagined perspectives aligned with the body). Through virtual reality technology, participants learned object locations around a room (learning room) and made spatial judgments from imagined perspectives aligned or misaligned with their actual facing direction. Sensorimotor alignment effects were found when testing occurred in the learning room but not after walking 3 m into a neighboring (novel) room. Sensorimotor alignment effects returned after returning to the learning room or after providing participants with egocentric imagery instructions in the novel room. Additionally, visual and spatial similarities between the test and learning environments were independently sufficient to cause sensorimotor alignment effects. Memory alignment effects, independent from sensorimotor alignment effects, occurred in all testing conditions. Results are interpreted in the context of two-system spatial memory theories positing separate representations to account for sensorimotor and memory alignment effects.  相似文献   

11.
Spatial memories are often hierarchically organized with different regions of space represented in unique clusters within the hierarchy. Each cluster is thought to be organized around its own microreference frame selected during learning, whereas relationships between clusters are organized by a macroreference frame. Two experiments were conducted in order to better understand important characteristics of macroreference frames. Participants learned overlapping spatial layouts of objects within a room-sized environment before performing a perspective-taking task from memory. Of critical importance were between-layout judgments thought to reflect the macroreference frame. The results indicate that (1) macroreference frames characterize overlapping spatial layouts, (2) macroreference frames are used even when microreference frames are aligned with one another, and (3) macroreference frame selection depends on an interaction between the global macroaxis (defined by characteristics of the layout of all learned objects), the relational macroaxis (defined by characteristics of the two layouts being related on a perspective-taking trial), and the learning view. These results refine the current understanding of macroreference frames and document their broad role in spatial memory.  相似文献   

12.
It has been proposed that spatial reference frames with which object locations are specified in memory are intrinsic to a to-be-remembered spatial layout (intrinsic reference theory). Although this theory has been supported by accumulating evidence, it has only been collected from paradigms in which the entire spatial layout was simultaneously visible to observers. The present study was designed to examine the generality of the theory by investigating whether the geometric structure of a spatial layout (bilateral symmetry) influences selection of spatial reference frames when object locations are sequentially learned through haptic exploration. In two experiments, participants learned the spatial layout solely by touch and performed judgments of relative direction among objects using their spatial memories. Results indicated that the geometric structure can provide a spatial cue for establishing reference frames as long as it is accentuated by explicit instructions (Experiment 1) or alignment with an egocentric orientation (Experiment 2). These results are entirely consistent with those from previous studies in which spatial information was encoded through simultaneous viewing of all object locations, suggesting that the intrinsic reference theory is not specific to a type of spatial memory acquired by the particular learning method but instead generalizes to spatial memories learned through a variety of encoding conditions. In particular, the present findings suggest that spatial memories that follow the intrinsic reference theory function equivalently regardless of the modality in which spatial information is encoded.  相似文献   

13.
Four experiments examined reference systems in spatial memories acquired from language. Participants read narratives that located 4 objects in canonical (front, back, left, right) or noncanonical (left front, right front, left back, right back) positions around them. Participants' focus of attention was first set on each of the 4 objects, and then they were asked to report the name of the object at the location indicated by a direction word or an iconic arrow. The results indicated that spatial memories were represented in terms of intrinsic (object-to-object) reference systems, which were selected using egocentric cues (e.g., alignment with body axes). Results also indicated that linguistic direction cues were comprehended in terms of egocentric reference systems, whereas iconic arrows were not.  相似文献   

14.
15.
In two experiments, we investigated whether reference frames acquired through touch could influence memories for locations learned through vision. Participants learned two objects through touch, and haptic egocentric (Experiment 1) and environmental (Experiment 2) cues encouraged selection of a specific reference frame. Participants later learned eight new objects through vision. Haptic cues were manipulated, whereas visual learning was held constant in order to observe any potential influence of the haptically experienced reference frame on memories for visually learned locations. When the haptically experienced reference frame was defined primarily by egocentric cues, cue manipulation had no effect on memories for objects learned through vision. Instead, visually learned locations were remembered using a reference frame selected from the visual study perspective. When the haptically experienced reference frame was defined by both egocentric and environmental cues, visually learned objects were remembered in the context of the haptically experienced reference frame. These findings support the common reference frame hypothesis, which proposes that locations learned through different sensory modalities are represented within a common reference frame.  相似文献   

16.
Within the field of selective attention, two separate literatures have developed, one examining the effect of selection of objects and another examining the effect of selection of features. The present study bridged these two traditions by examining the compatibility effects generated by two features of attended and unattended nontarget (foil) stimuli. On each trial, participants determined either the identity or the orientation of a visual stimulus. Spatial attention was controlled using cues (presented prior to the target frame) designed to involuntarily capture attention. We independently manipulated the stimulus dimension the participants prepared for and the stimulus dimension on which they actually executed the task. Preparation had little influence on the magnitude of compatibility effects from foil stimuli. For attended stimuli, the stimulus dimension used in executing the task produced large compatibility effects, regardless of whether that dimension was prepared. These and other compatibility effects (e.g., Stroop effects) are discussed in relation to an integrative model of attentional selection. The key assumptions are that (1) selection occurs at three distinct levels (space, object, and task), (2) spatial attention leads to semantic processing of all dimensions, and (3) features do not automatically activate responses unless that object is selected for action.  相似文献   

17.
Although spatial orientation with respect to the geometric properties of an environment appears to be an ability shared across various species, debate remains concerning potential similarities and differences with respect to the underlying mechanism(s). One prominent theoretical account of orientation with respect to the environment suggests that participants match visual memories to their current visual perception and navigate to reduce the discrepancy between the two. We tested whether visual input was necessary to incidentally encode the geometric properties of an environment, by training disoriented and blindfolded adult participants to search by touch for a target object hidden in one of four locations, marked by distinctive textural cues, located in the corners of a rectangular enclosure. Following training, we removed the distinctive textural cues and probed the extent to which the participants had learned the geometry of the enclosure. Even in the absence of vision and unique textural cues, search behavior was consistent with evidence for the encoding of enclosure geometry. A follow-up experiment in which participants were trained in a rectangular enclosure but were tested in a square enclosure provided converging evidence that search behavior was influenced by the geometric properties of the enclosure. Collectively, these results suggest that even in the absence of vision, participants incidentally encoded the geometric properties of the enclosure, indicating that visual input is not required to encode the geometric properties of an environment.  相似文献   

18.
We report experiments on captive cotton-top tamarins (Saguinus oedipus) designed to explore two components of spatial foraging. First, do tamarins have the capacity to extract geometric information concerning the spatial relationship between a landmark and a piece of food located above or below it? Second, when tamarins use a landmark to find a target location, what non-geometric features of the landmark do they encode? To explore these problems, we created an artificial jungle environment and trained subjects to find food either above or below a target object (i.e., landmark). Once subjects successfully located the food, we transformed various features associated with the landmark, including its color, orientation, and shape; we also manipulated the landmark-food reward distance, the overall shape of the jungle, and the number and position of landmarks. Results showed that the tamarins' success in finding the food reward was not affected by landmark color, orientation, number, or overall shape of the jungle, suggesting that with respect to the particular test conditions, these features are not relevant to the representation of a landmark. Subjects also generalized to novel landmark-food distances, suggesting that they had integrated geometric (i.e., above/below) with non-geometric (i.e., color/shape) features. Performance was negatively affected by changes to the shape of the landmark, indicating that this feature is critical to the representation of a landmark. Accepted after revision: 7 August 2001 Electronic Publication  相似文献   

19.
赵民涛  牟炜民 《心理学报》2005,37(3):308-313
让被试在没有外界参照线索的条件下,从三个观察视点学习物体场景,首次以局部场景再认范式探讨了空间记忆中场景表征的朝向特异性。结果表明:(1)多视点学习条件下,场景空间表征依然是依赖于特定朝向的,不支持空间表征独立于朝向和空间表征依赖于多个观察朝向的观点。(2)场景空间表征的朝向依赖性不仅表现于方位判断任务,也同样表现于场景再认任务。(3)场景本身的内在结构对空间表征中参照系的选取有重要影响。  相似文献   

20.
Two experiments explored the role of environmental cues in maintaining spatial orientation (sense of selflocation and direction) during locomotion. Of particular interest was the importance of geometric cues (provided by environmental surfaces) and featural cues (nongeometric properties provided by striped walls) in maintaining spatial orientation. Participants performed a spatial updating task within virtual environments containing geometric or featural cues that were ambiguous or unambiguous indicators of self-location and direction. Cue type (geometric or featural) did not affect performance, but the number and ambiguity of environmental cues did. Gender differences, interpreted as a proxy for individual differences in spatial ability and/or experience, highlight the interaction between cue quantity and ambiguity. When environmental cues were ambiguous, men stayed oriented with either one or two cues, whereas women stayed oriented only with two. When environmental cues were unambiguous, women stayed oriented with one cue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号