首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The main impacts of insulin favor the peripheral organs. Although it functions as a neuropeptide, insulin possesses also some central effects. The aim of this study was to determine the effect of intrahippocampal infusion of insulin on passive avoidance learning in healthy male rats. Thirty male wistar rats were divided into three groups (n=10 each). The experimental group had posttraining insulin infusion into the CA1 region of dorsal hippocampus, after which they were compared with sham (saline) and control (intact) groups. Insulin treated animals had greater latency to enter the dark compartment in compare with saline treated (p=0.023) or control groups (p=0.017). Upon our results, we concluded that intrahippocampal injections of insulin may enhance memory for a simple learning task which supports the concept that insulin possibly plays an endogenous role in memory formation.  相似文献   

2.
This study investigated glucocorticoid-dopaminergic interactions in modulating retrieval of long-term memory in an inhibitory avoidance task. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment of the apparatus was recorded. Systemically administered corticosterone (1 or 3 mg/kg) given to rats 30 min before retention testing impaired their memory retrieval, but the lower dose was more effective than the higher one. Administration of the dopamine (DA) D2 receptor antagonist sulpiride (6 or 20 mg/kg) 30 min before corticosterone attenuated the impairing effects of corticosterone (1 mg/kg) on memory retrieval. Administration of the DA D1 receptor antagonist SCH23390 (25 or 50 microg/kg) had no effect on corticosterone-induced impairment of memory retrieval. Further, applied doses of sulpiride or SCH23390 alone were ineffective in modulating memory retrieval. These findings provide evidence for the existence of an interaction between glucocorticoids and DA D2 receptor on memory retrieval process.  相似文献   

3.
We recently reported that blockade of dopamine (DA) D2 receptors attenuated deficits in long-term memory retrieval induced by a systemic injection of corticosterone, but the anatomical sites of such interaction were not known. In this study, we investigated whether the DA D2 receptors located in the medial prefrontal cortex (mPFC) may play a role in the impairing effects of glucocorticoids on the memory retrieval process. Young adult male rats were trained in a one trial inhibitory avoidance task (0.5 mA, 3s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment and the time spent in light compartment of the apparatus were recorded. Systemically administered corticosterone (1mg/kg) given to rats 30 min before retention testing impaired their memory retrieval. Bilateral microinjections of the DA D2 receptor antagonist sulpiride (10 or 100 ng/0.5 microl per side) into the mPFC 30 min before corticosterone administration attenuated the glucocorticoid-induced impairment of memory retrieval. Furthermore, applied doses of sulpiride alone were ineffective in modulating memory retrieval. These findings indicate that D2 receptors located in the mPFC play an important role in mediating the impairing effects of glucocorticoids on memory retrieval.  相似文献   

4.
The behavioral tasks aiming to evaluate learning and memory mechanisms currently available to zebrafish (Danio rerio) involve long training sessions frequently along multiple days and are based on shuttle box or active-avoidance protocols, preventing a detailed analysis of cellular and molecular time-dependent processes involved in memory acquisition and consolidation. In order to explore zebrafish’s potential contribution to the characterization of the molecular machinery underlying learning and memory rapidly acquired and reliable paradigms are necessary. In this study we present a rapid and effective learning protocol in a single-trial inhibitory avoidance in zebrafish. In a simple apparatus, adult animals learned to refrain from swimming from a white into a dark compartment in order to avoid an electric shock during a single-trial training session that lasted less than 2 min. The resulting memory is robust, long-lasting and sensitive to NMDA-receptor antagonist MK-801 given in the tank water immediately after training. Experiments aiming to further characterize the events underlying memory formation, retrieval or extinction or those looking for cognitive profiling of mutants, neurotoxicological studies and disease models may benefit from this task, and together with complementary strategies available for zebrafish may significantly improve our current knowledge on learning and memory mechanisms.  相似文献   

5.
The existence of handedness differences in the retrieval of episodic memories is well-documented, but virtually all have been obtained under conditions of intentional learning. Two experiments are reported that extend the presence of such handedness differences to memory retrieval under conditions of incidental learning. Experiment 1 used Craik and Tulving’s (1975) classic levels-of-processing paradigm and obtained handedness differences under incidental and intentional conditions of deep processing, but not under conditions of shallow incidental processing. Experiment 2 looked at incidental memory for distracter items from a recognition memory task and again found a mixed-handed advantage. Results are discussed in terms of the relation between interhemispheric interaction, levels of processing, and episodic memory retrieval.  相似文献   

6.
ABSTRACT

Long-term memory retrieval ability and working memory can share attention control ability. Based on cognitive plasticity, a hypothesis that cognitive training could improve long-term memory retrieval efficiency and that this could transfer to retrieval involving working memory was proposed. 60 undergraduates were randomly assigned to a group of training and an active control group; all the participants completed the same tasks in the same order before and after the training, the tasks included a long-term memory retrieval access task, a intelligence test, a switching task, a working memory updating task, a response inhibition task and an interference control task. The statistics results indicate that cognitive training can improve long-term memory retrieval efficiency and has a transfer effect on working memory updating, interference control and switching ability, but not on response inhibition or intelligence. This reveal the plasticity of long-term memory retrieval and its influence on working memory.  相似文献   

7.
We combined a feedback-based learning task with a recognition memory paradigm to investigate how reward-based learning affects the event-related potential (ERP) correlates of recognition memory in younger and older adults. We found that positive, but not negative learning improves memory and results in an increased early ERP old–new effect, which is typically associated with familiarity-based memory. This indicates that reward-based learning supports a fast and relatively automatic memory retrieval process. Furthermore, we found age-related impairments in reward-based learning, whereas memory for the learned information was intact in the elderly, suggesting that declarative memory might be less affected by aging.  相似文献   

8.
The relationships among abilities, strategies, and performance on an associative learning task were investigated for young (aged 17 to 34) and older adults (aged 60 to 82). Participants received extensive practice on a noun-pair task in which they could use a visual-scanning strategy or a memory-retrieval strategy. Older adults were more likely to use the scanning strategy. Age differences were reduced when comparisons were made only for participants using a retrieval strategy. Associative memory was predictive of learning on the task, and semantic memory access speed was predictive of practiced performance. Practiced performance on a memory-search task that also required associative learning was predictive of practiced noun-pair performance. Models of ability-performance relationships for skill acquisition are discussed.  相似文献   

9.
One goal of the present study was to determine how pre-exposure to a set of contextual cues affected subsequent reinforced inhibitory avoidance task performance using those cues (latent inhibition model). In addition, immunohistochemical assessment of the phosphorylated (activated) form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2) was examined. Adult, male Long Evans rats were randomly assigned into either pre-exposure (PE) or different pre-exposure (DPE) groups. All rats received 3 days of contextual pre-exposure (same or different context as that used for reinforced training) and were trained, 24 h later, on an inhibitory avoidance task (with or without shock). Rats were euthanized 24 h after training; half with a retention test and half without. Behaviorally, the PE group showed reduced latencies to enter the dark/shock compartment during the retention test compared to the DPE group showing the latent inhibition phenomenon. Compared to the shocked and tested DPE group, the shocked and tested PE group showed fewer pERK1/2-ir neurons in the secondary motor cortex, the anterior cingulate, the pre- and infra-limbic cortices, and the central nucleus of the amygdala. These regions showed similar numbers of pERK1/2-labeled neurons when comparing the shocked and tested PE group with the nonshocked and tested PE group. This suggests the possibility that brain regions showing decreased pERK1/2 levels in association with attenuated inhibitory avoidance performance may be involved in different aspects of the memory retrieval process.  相似文献   

10.
The aim of this article was to provide experimental evidence that classical dissociation between levels of consciousness associated with memory retrieval (i.e., implicit or explicit) can be explained in terms of task dependency and distinctiveness of traces. In our study phase, we manipulated the level of isolation (partial vs. global) of the memory trace by means of an isolation paradigm (isolated words among non-isolated words). We then tested these two types of isolation in a series of tasks of increasing complexity: a lexical decision task, a recognition task, and a free recall task. The main result of this study was that distinctiveness effects were observed as a function of the type of isolation (level of isolation) and the nature of the task. We concluded that trace distinctiveness improves subsequent access to the trace, while the level of trace distinctiveness also appears to determine the possibility of conscious or explicit retrieval.  相似文献   

11.
Experiences with a high emotional content (aversive) tend to be stored as long-term memories; however, there are also contextual recollections, which form a significant part of our memories. Different research has shown that the insular cortex (IC) plays an important role during aversive memory formation, yet its role during incidental/non-aversive learning like pre-exposure contextual memory formation has received little attention. The objective of this research was to establish the role of cholinergic activity in the IC through its muscarinic receptors during the formation of inhibitory avoidance (IA) memory, as well as during pre-exposure contextual memory, using a paradigm such as latent inhibition (LI). Rats with bilateral cannulae directed into the IC were trained in the LI paradigm of IA or IA task alone. The muscarinic antagonist receptor scopolamine was infused bilaterally into the IC 5 min before the pre-exposure into the dark chamber of the IA cage, one day before the conventional IA training or during the IA training day. During the IA test, the entrance latency into the dark chamber of the IA cage was measured as an index of contextual memory. The results showed that scopolamine infused before and after IA training disrupts inhibitory avoidance memory. Also, it showed that the pre-exposed saline-infused animals (LI) had a lower entrance latency compared to the group not pre-exposed (IA). However, the group that received scopolamine into the IC before, but not after, the pre-exposure to the dark chamber, presented a similar latency to the IA group, showing a blockade of the latent inhibition of the IA. These results suggest that cholinergic activity in the insular cortex is necessary during the acquisition and consolidation of avoidance memory, but appears necessary only during the acquisition of pre-exposure non-aversive contextual memory.  相似文献   

12.
Experiments involving blocked and continuous manipulations of the semantic naming context demonstrate that, when speakers name several taxonomically related objects in close succession, they display persistent interference effects. A review of studies using the blocked paradigm shows that, unlike the continuous paradigm, it typically does not induce cumulative interference effects in healthy speakers. This contrasts with the simulation results obtained from a model of semantic context effects recently put forward by Oppenheim and colleagues [Oppenheim, G. M., Dell, G. S., & Schwartz, M. F. (2010). The dark side of incremental learning: A model of cumulative semantic interference during lexical access in speech production. Cognition, 114, 227--262], which generates cumulative effects in both paradigms. We propose that the effects are non-cumulative in the blocked paradigm, because it allows participants to bias top-down the levels of activation of lexical-semantic representations, thereby curtailing the accumulating interference. Indeed, prior research has shown that the interference effects in the blocked paradigm are exacerbated when participants carry out a concurrent digit-retention task, loading on working memory and reducing their capacity to exert a top-down bias. In Experiment 1, combining the continuous paradigm with a digit-retention task, we demonstrate that this does not exacerbate cumulative context effects, corroborating the selective role of working memory and the associated top-down biasing mechanism in the blocked paradigm. A review of neuropsychological and neuroimaging studies demonstrates that left inferior frontal regions may play a critical role in controlling semantic interference top-down. We discuss the implications of these findings for language production research and for models of lexical-semantic encoding.  相似文献   

13.
孟迎芳  郭春彦 《心理学报》2009,41(8):694-705
实验采用“学习-测验”范式, 考察在编码或提取中分别附加的干扰任务对内隐测验或外显测验中获得的ERP新旧效应产生的影响。结果表明, 在内隐测验中, 编码干扰对随后测验中的ERP新旧效应没有产生影响, 而提取干扰却改变了300~500ms新旧效应的脑区位置, 破坏了500~700ms新旧效应; 与之相反, 在外显测验中, 编码干扰破坏了500~700ms新旧效应, 而提取干扰对这一效应没有产生影响, 即编码与提取干扰对内隐或外显测验中的ERP新旧效应都产生了非对称性的影响, 但又存在着差异, 从而为两种记忆在编码与提取加工的关系上存在的分离现象提供了神经生理方面的证据。  相似文献   

14.
Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the dorsal hippocampus. However, if the number of nonreinforced retrieval trials is insufficient to induce long-lasting extinction, then a hippocampal protein synthesis-dependent reconsolidation process recovers the original memory. Inhibition of hippocampal protein synthesis after reversal learning sessions impairs retention of the reversed preference and blocks persistence of the original one, suggesting that reversal learning involves reconsolidation rather than extinction of the original memory. Our results suggest the existence of a hippocampal protein synthesis-dependent reconsolidation process that operates to recover or update retrieval-weakened memories from incomplete extinction.  相似文献   

15.
There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a human list-learning paradigm. On Day 1, rats were trained to run to three feeders (List 1) for rewards. On Day 2, rats were trained to run to three different feeders (List 2) in either the same (Reminder condition) or a different (No Reminder condition) experimental context than on Day 1. On Day 3, rats were cued to recall List 1. Rats in the Reminder condition made significantly more visits to List 2 feeders (intrusions) during List 1 recall than rats in the No Reminder condition, indicating that the reminder triggered reactivation and allowed integration of List 2 items into List 1. This reminder effect was selective for the reactivated List 1 memory, as no intrusions occurred when List 2 was recalled on Day 3. No intrusions occurred when retrieval took place in a different context from the one used at encoding, indicating that the expression of the updated memory is dependent upon the retrieval context. Finally, the level of intrusions was highest when retrieval took place immediately after List 2 learning, and generally declined when retrieval occurred 1-4 h later, indicating that the List 2 memory competed with short-term retrieval of List 1. These results demonstrate the dynamic nature of memory over time and the impact of environmental context at different stages of memory processing.  相似文献   

16.
Stress before retention testing impairs memory, whereas memory performance is enhanced when the learning context is reinstated at retrieval. In the present study, we examined whether the negative impact of stress before memory retrieval can be attenuated when memory is tested in the same environmental context as that in which learning took place. Subjects learned a 2-D object location task in a room scented with vanilla. Twenty-four hours later, they were exposed to stress or a control condition before memory for the object location task was assessed in a cued-recall test, either in the learning context or in a different context (unfamiliar room without the odor). Stress impaired memory when assessed in the unfamiliar context, but not when assessed in the learning context. These results suggest that the detrimental effects of stress on memory retrieval can be abolished when a distinct learning context is reinstated at test.  相似文献   

17.
Most studies of task-set switching rely on cuing paradigms, in which external cues indicate the upcoming task. The present study used an entirely predictable task sequence in a variant of the alternating-runs paradigm of Rogers and Monsell (1995). Preparation effects with purely internal memory cues were compared with those in another experimental group with additional external cues presented prior to the stimulus. External cues led to strongly reduced shift costs with prolonged preparation time. However, this effect was much smaller with internal cues only. To account for this differential effect of preparation time as a function of cue type, it is suggested that internal cues select the next task set, which is sufficient to perform the task. External cues additionally facilitate preparatory retrieval of task-specific stimulus-response rules. This account may also explain why incidental task-sequence learning based on internal cues did not reduce shift costs.  相似文献   

18.
Memory is better when learning events are spaced, as compared with massed (i.e., the spacing effect). Recent theories posit that retrieval of an item’s earlier presentation contributes to the spacing effect, which suggests that individual differences in the ability to retrieve an earlier event may influence the benefit of spaced repetition. The present study examined (1) the difficulty of task demands between repetitions, which should modulate the ability to retrieve the earlier information, and (2) individual differences in working memory in a spaced repetition paradigm. Across two experiments, participants studied a word set twice, each separated by an interval where duration was held constant, and the difficulty of the intervening task was manipulated. After a short retention interval following the second presentation, participants recalled the word set. Those who scored high on working memory measures benefited more from repeated study than did those who scored lower on working memory measures, regardless of task difficulty. Critically, a crossover interaction was observed between working memory and intervening task difficulty: Individuals with low working memory scores benefited more when task difficulty was easy than when it was difficult, but individuals with high working memory scores produced the opposite effect. These results suggest that individual differences in working memory should be considered in optimizing the benefits of repetition learning.  相似文献   

19.
The Retrieval-Induced Forgetting (RIF) paradigm is used to study how the repeated retrieval practice of particular memories impairs the retrieval of related memory traces. A study is reported where this automatic form of forgetting was investigated in a group of sexual-assault victims and a control group. Using a recognition-cued RIF task, the present study examined RIF with neutral, positive, negative and trauma-specific stimuli. Response time data showed that irrespective of previous trauma exposure, a RIF effect was observed for neutral material, but not for emotional material. No differences in RIF between the trauma group and the control group were found. Inconsistencies with previous literature and the implications for emotional memory are discussed.  相似文献   

20.
Several studies have demonstrated that mammals, birds and fish use comparable spatial learning strategies. Unfortunately, except in insects, few studies have investigated spatial learning mechanisms in invertebrates. Our study aimed to identify the strategies used by cuttlefish (Sepia officinalis) to solve a spatial task commonly used with vertebrates. A new spatial learning procedure using a T-maze was designed. In this maze, the cuttlefish learned how to enter a dark and sandy compartment. A preliminary test confirmed that individual cuttlefish showed an untrained side-turning preference (preference for turning right or left) in the T-maze. This preference could be reliably detected in a single probe trial. In the following two experiments, each individual was trained to enter the compartment opposite to its side-turning preference. In Experiment 1, distal visual cues were provided around the maze. In Experiment 2, the T-maze was surrounded by curtains and two proximal visual cues were provided above the apparatus. In both experiments, after acquisition, strategies used by cuttlefish to orient in the T-maze were tested by creating a conflict between the formerly rewarded algorithmic behaviour (turn, response learning) and the visual cues identifying the goal (place learning). Most cuttlefish relied on response learning in Experiment 1; the two strategies were used equally often in Experiment 2. In these experiments, the salience of cues provided during the experiment determined whether cuttlefish used response or place learning to solve this spatial task. Our study demonstrates for the first time the presence of multiple spatial strategies in cuttlefish that appear to closely parallel those described in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号