首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionAlthough it is known that individuals with Parkinson's disease (PD) have difficulties performing dual-task activities, most of the studies have verified the effect of dual tasks on gait using tasks that are uncommon to perform while walking. However, the realization of tasks involving gait that really represents the daily activities carried out by the participants, allow us to detect real fall risk situations of individuals with PD during their gait.ObjectiveOur aim was to verify the influence of daily-life dual-tasks on gait spatiotemporal variables of the older adults with PD.Methods20 older adults without PD and 20 older adults with PD participated in the study. Gait kinematic was analyzed under three different conditions: walking without dual task, walking carrying bags with weight, and walking talking on the cell phone.ResultsOlder adults with PD presented lower speed (p = .001), cadence (p = .039), and shorter step length (p = .028) than older adults without PD during walking without dual tasks. When walking while carrying bags with weight, older adults with PD had a lower speed (p < .001), cadence (p = .015), shorter step length (p = .008), and greater double support time (p = .021) compared with older adults without PD. During walking while talking on the cell phone, older adults with PD walked with lower speed (p < .001), cadence (p = .013), shorter step length (p = .001) and swing time (p = .013), and increased double support time (p = .008) and support time (p = .014) in relation to older adults without PD.ConclusionDaily-life dual tasks impair the spatiotemporal variables of gait in the older adults with PD, which was most evident during walking talking on the cell phone.  相似文献   

2.
The ability to perform multiple tasks simultaneously has become increasingly important as technologies such as cell phones and portable music players have become more common. In the current study, we examined dual-task costs in older and younger adults using a simulated street crossing task constructed in an immersive virtual environment with an integrated treadmill so that participants could walk as they would in the real world. Participants were asked to cross simulated streets of varying difficulty while either undistracted, listening to music, or conversing on a cell phone. Older adults were more vulnerable to dual-task impairments than younger adults when the crossing task was difficult; dual-task costs were largely absent in the younger adult group. Performance costs in older adults were primarily reflected in timeout rates. When conversing on a cell phone, older adults were less likely to complete their crossing compared with when listening to music or undistracted. Analysis of time spent next to the street prior to each crossing, where participants were presumably analyzing traffic patterns and making decisions regarding when to cross, revealed that older adults took longer than younger adults to initiate their crossing, and that this difference was exacerbated during cell phone conversation, suggesting impairments in cognitive planning processes. Our data suggest that multitasking costs may be particularly dangerous for older adults even during everyday activities such as crossing the street.  相似文献   

3.
The patellofemoral (PF) joint is susceptible to many pathologies resulting from acute injury, chronic disease and complications following surgical treatment of the knee. The objectives of this study were to describe case series measurements of patellar motion in healthy older adults as they performed three gait activities, determine patellar tendon angle and moment arm, and show if these quantities were activity dependent. A stereo radiography system was utilized to obtain the 3D PF kinematics of seventeen healthy people over 55 years of age (8F/9M, 66 ± 7.9 years old, 75.7 ± 20.5 kg) as they performed level walking, a step down, and a pivot turn. For a similar portion of the gait cycle, patellar flexion (6.2° ± 5.8) and average range of motion (ROM) (11.0° ± 5.9°) for walking with a step down was greater compared to the other gait activities (gait ROM 6.9° ± 4.3°, pivot ROM 5.7° ± 3.3°), while the average range of motion for patella tilt was greater during walking with a pivot turn (8.6° ± 3.9°). However, each subject displayed distinct PF kinematic trends during all activities with a few notable exceptions. Importantly, the knee extensor mechanism characteristics of patellar tendon angle and moment arm showed considerable variation across subjects but were largely unaltered by changing activities. The variation between subjects and the different behavior of the patella during the step down and pivot emphasized the need for analysis of a range of activities to reveal individual response to pathology and treatment in patellar maltracking and osteoarthritis.  相似文献   

4.
ObjectiveTo compare the parameters of gait kinematics of older adults with cognitive impairment who live in community dwellings or those living or spending most of the time in non-family environment settings.MethodsThe sample was composed of 33 older adults of both sexes with cognitive impairment. Participants were separated into three groups: a community-dwelling older adult group comprised of 11 subjects; a semi-institutionalized older adult group comprised of 10 older adults attended in a geriatric daycare institution; and an institutionalized older adult group comprised of 12 older adults living in long-term institutions. Gait kinematics were recorded by pressure sensors (footswitches). Fifty gait cycles at self-selected pace were analyzed to obtain: gait speed, stride length, stance, swing, and stride time. The variability of these parameters was also analyzed.ResultsMANCOVA identified the main effect of groups (p < 0.001). Gait speed of older adults living in long-term institutions and older adults attended in geriatric daycare institutions was slower than community-living older adults (p < 0.001 and p = 0.04, respectively). Swing and stride time variability was higher in older adults living in long-term institutions (p = 0.003 and p = 0.001) and in older adults attended in geriatric daycare institutions (p = 0.02 and p = 0.001) than in community-dwelling older adults.ConclusionThe most important finding was that older adults with cognitive impairment who need non-family residential setting care had higher gait kinematics abnormalities, which may increase the risk of falls, compared to those who live in the community.  相似文献   

5.
Dual-task methods have been used to demonstrate increased prioritization of walking performance over cognition in healthy aging. This is expressed as greater dual-task costs in cognitive performance than in walking. However, other research shows that older adults can prioritize cognitive performance over walking when instructed to do so. We asked whether age-related cognitive prioritization would emerge by experimentally manipulating cognitive difficulty. Young and older adults performed mental arithmetic at two levels of difficulty, alone or while walking. Electromyography and footswitches were used to measure muscle activity and stride parameters. Under high cognitive load, older adults increased their stride time, stride length, and hamstring activity, while maintaining their cognitive performance. Young adults showed negligible dual-task costs in each domain. The older adults appeared to successfully adapt their stride in response to high cognitive demands. The results have implications for neural models of gait regulation, and age differences in task emphasis.  相似文献   

6.
7.
Adjustments of preplanned steps are essential for fall avoidance and require response inhibition. Still, inhibition is rarely tested under conditions resembling daily living. We evaluated the ability of young and older adults to modify ongoing walking movements using a novel precision step inhibition (PSI) task combined with an auditory Stroop task.Healthy young (YA, n = 12) and older (OA, n = 12) adults performed the PSI task at 4 individualized difficulty levels, as a single and dual task (DT). Subjects walked on a treadmill by stepping on virtual stepping stones, unless these changed color during approach, forcing the subjects to avoid them. OA made more failures (40%) on the PSI task than YA (16%), but DT did not affect their performance. In combination with increased rates of omitted Stroop task responses, this indicates a “posture first” strategy. Yet, adding obstacles to the PSI task significantly deteriorated Stroop performance in both groups (the average Stroop composite score decreased by 13% in YA and 27% in OA). Largest deficit of OA was observed in rates of incorrect responses to incongruent Stroop stimuli (OA 35% and YA 12%), which require response inhibition. We concluded that the performance of OA suffered specifically when response inhibition was required.  相似文献   

8.
The authors aimed to determine whether the Gait Deviation Index (GDI) could be feasible to characterize gait in patients with Parkinson's disease (PD) and evaluate outcomes of levodopa treatment. Twenty-two PD participants were evaluated with clinical examination and 3-D quantitative gait analysis (GDI was calculated from gait analysis) in 2 states (OFF and ON) after taking levodopa. Twenty age-matched healthy participants (CG) were included as controls. The GDI value in the OFF state was 83.4 ± 11.5 (statistically different from CG) while clinical scales demonstrated a moderate-severe gait impairment of these patients. Significant improvements are evident from clinical scores and by GDI values in the ON state. The mean GDI for the ON state (GDI(ON): 87.9 ± 10.4) was significantly higher than in for the OFF state (GDI(OFF): 83.4 ± 11.5), indicating a global gait improvement after the treatment. The results show that GDI has lower value as an indicator of pathology in PD patients than in quantifying the effects of levodopa treatment in PD state.  相似文献   

9.
It is commonly thought that at prescribed speeds humans choose gait parameters that minimize the cost of transportation. However, it is unclear whether and how the relationship between step length and step frequency is affected by the additional physiological factors caused by constraints. We performed a series of experiments to understand the selection of gait parameters under different constraints from a probabilistic perspective. First, we show that the effect of constraining step length on step frequency (i.e., monotonically decrease, Experiment I) is different from the effect of constraining step frequency on step length (i.e., inverted-U, Experiment II). Using the results from Experiment I and II, we summarized the marginal distribution of step length and step frequency and built their joint distribution in a probabilistic model. The probabilistic model predicts the selection of gait parameters by achieving the maximum probability of joint distribution of step length and step frequency. In Experiment III, the probabilistic model could well predict gait parameters at prescribed speeds, and it is similar to minimizing the cost of transportation. Finally, we show that the distribution of step length and step frequency were completely different between constrained and non-constrained walking. We argue that constraints in walking are major factors determining how humans choose gait parameters due to their involvement of mediators, i.e., attention or active control. Using the probabilistic model to account for gait parameters has an advantage compared with fixed-parameter models in that it can still include the effect of hidden mechanical, neurophysiological, or psychological variables by grouping them into distribution curves.  相似文献   

10.
The ability to interpret vocal (prosodic) cues during social interactions can be disrupted by Parkinson's disease, with notable effects on how emotions are understood from speech. This study investigated whether PD patients who have emotional prosody deficits exhibit further difficulties decoding the attitude of a speaker from prosody. Vocally inflected but semantically nonsensical ‘pseudo‐utterances’ were presented to listener groups with and without PD in two separate rating tasks. Task 1 required participants to rate how confident a speaker sounded from their voice and Task 2 required listeners to rate how polite the speaker sounded for a comparable set of pseudo‐utterances. The results showed that PD patients were significantly less able than HC participants to use prosodic cues to differentiate intended levels of speaker confidence in speech, although the patients could accurately detect the polite/impolite attitude of the speaker from prosody in most cases. Our data suggest that many PD patients fail to use vocal cues to effectively infer a speaker's emotions as well as certain attitudes in speech such as confidence, consistent with the idea that the basal ganglia play a role in the meaningful processing of prosodic sequences in spoken language ( Pell & Leonard, 2003 ).  相似文献   

11.
BackgroundIdentification of the cognitive mechanisms behind gait changes in aging is a prime endeavor in gerontology and geriatrics. For this reason, we have implemented a new dual-task paradigm where an auditory attentional task is performed during over-ground walking. Dichotic listening assesses spontaneous attention and voluntary attention directed to right and left-ear. The uniqueness of dichotic listening relies on its requirements that vary in difficulty and recruitment of resources from whole brain to one brain hemisphere. When used in dual-tasking, asymmetric effects on certain gait parameters have been reported.ObjectivesThe present study aims to acquire a more global understanding on how dichotic listening affects gait domains. Specifically, we aimed to understand how spontaneous vs lateralized auditory attention altered the Principal Component Analysis (PCA) structure of gait in healthy older adults.MethodsSeventy-eight healthy older adults (mean age: 71.1 years; 44 women and 34 men) underwent the Bergen dichotic listening test while walking. As this study only focuses on the effects of the cognitive task on gait, only dual-task costs for gait were calculated and entered into the PCA analyses. We explored the PCA structure for the effects on bilateral gait parameters (i.e., both limbs together) as well as on lateralized gait parameters (i.e, separate parameters by limb). We first established gait domains during single-task walking. Then, dual-task cost scores for gait were entered in a series of PCAs.ResultsResults from the PCAs for bilateral gait parameters showed limited alterations on gait structure. In contrast, PCAs for lateralized data demonstrated modifications of the gait structure during dichotic listening. The PCAs corresponding for all dichotic listening conditions showed different factor solutions ranging between 4 and 6 factors that explained between 73.8% to 80% of the total variance. As a whole, all conditions had an impact on “pace”, “pace variability” and “base of support variability” domains. In the spontaneous attention condition, a six-factor solution explaining 78.3% of the variance showed asymmetrical disruptions on the PCA structure. When attention was focused to right-ear, a five-factor solution explaining 89% of the variance and similar to baseline was found. When attention was directed to left-ear, a four-factor solution explaining 73.8% of the variance was found with symmetrical impact on all factors.ConclusionsThese findings demonstrate for the first time that specific facets of attentional control affects gait domains both symmetrically and asymmetrically in healthy older adults.  相似文献   

12.
13.
Eight people with Parkinson's disease (PD), 8 age-matched older adults, and 8 young adults executed 3-dimensional rapid aiming movements to 1, 3, 5, and 7 targets. Reaction time, flight time, and time after peak velocity to the 1st target indicated that both neurologically healthy groups implemented a plan on the basis of anticipation of upcoming targets, whereas the PD group did not. One suggested reason for the PD group's deficiency in anticipatory control is the greater variability in their initial force impulse. Although the PD group scaled peak velocity and time to peak velocity similarly to the other groups, their coefficients of variation were greater, making consistent prediction of the movement outcome difficult and thus making it less advantageous to plan too far in advance. A 2nd finding was that the PD group exhibited increased slowing in time after peak velocity in the final segments of the longest sequence, whereas the other 2 groups did not. The increased slowing could be the result of a different movement strategy, increased difficulty modulating the agonist and antagonist muscle groups later in the sequence, or both. The authors conclude that people with PD use more segmented planning and control strategies than do neurologically healthy older and young adults when executing movement sequences and that the locus of increased bradykinesia in longer sequences is in the deceleration phase of movement.  相似文献   

14.
Freezing of gait (FoG), a transient halt in walking, is a major mobility problem for patients with Parkinson's disease (PD). This study examined the factors that induce FoG, and identified the cues and strategies that help overcome it through a postal survey of 130 PD patients. 72% reported FoG. The factors that commonly induced FoG were turning, fatigue, confined spaces and stressful situations, in addition to emotional factors. FoG was also ameliorated by various attentional and external cueing strategies. The concept of paradoxical kinesis, the potential neural substrates of such external cueing effects, and their importance for rehabilitation in PD are discussed.  相似文献   

15.
Turning while walking is a crucial component of locomotion, often performed on irregular surfaces with little planning time. Turns can be difficult for some older adults due to physiological age-related changes. Two different turning strategies have been identified in the literature. During step turns, which are biomechanically stable, the body rotates about the outside limb, while for spin turns, generally performed with closer foot-to-foot distance, the inside limb is the main pivot point. Turning strategy preferences of older adults under challenging conditions remains unclear. The aim of this study was to determine how turning strategy preference in healthy older adults is modulated by surface features, cueing time, physiological characteristics of aging, and gait parameters. Seventeen healthy older adults (71.5 ± 4.2 years) performed 90° turns for two surfaces (flat, uneven) and two cue conditions (pre-planned, late-cue). Gait parameters were identified from kinematic data. Measures of lower-limb strength, balance, and reaction-time were also recorded. Generalized linear (logistic) regression mixed-effects models examined the effect of (1) surface and cuing, (2) physiological characteristics of ageing, and (3) gait parameters on turn strategy preference. Step turns were preferred when the condition was pre-planned (p < 0.001) (model 1) and when the gait parameters of stride regularity and maximum acceleration decreased (p = 0.010 and p = 0.039, respectively) (model 3). Differences in turn strategy selection under dynamic conditions ought to be evaluated in future fall-risk research and rehabilitation utilizing real-world activity monitoring.  相似文献   

16.
Individuals are exposed to repetitive dual-task-like situations in daily life, particularly while walking, and falls among community-dwelling older adults typically occur in such situations. Thus, understanding how individuals adapt their walking-related motion under dual-task conditions is of clinical importance. The present study was conducted to investigate the association between dual-task-related changes (DT-changes) in lower-limb gait parameters and DT-changes in lower-trunk sway. We hypothesized that DT-changes in both spatial- and temporal-lower-limb gait parameters would be associated with DT-changes in lower-trunk sway. Participants were older adults aged > 60 years who lived independently in communities (n = 43, 73.7 [6.1] years old), and younger adults (n = 28, 22.7 [5.1] years old). Participants were asked to walk while performing an additional cognitive task, or with no additional task. During walking, lower-limb gait parameters (step time, step length and width) and lower-trunk sway were measured using a photoelectric cell system and inertial sensors. In older adults, DT-changes in step time variability was significantly associated with DT-changes in lower-trunk sway (standard beta = 0.683, p = 0.003), and DT-changes in lower-trunk sway variability (standard beta = 0.493, p = 0.029). In younger adults, DT-changes in step width were significantly associated with DT-changes in lower-trunk sway (standard beta = 0.395, p = 0.041). The current results partially supported our hypotheses. The association between DT-changes in lower limb and DT-changes in lower-trunk sway varied according to age group.  相似文献   

17.
We examined participants’ strategy choices and metacognitive judgments during arithmetic problem-solving. Metacognitive judgments were collected either prospectively or retrospectively. We tested whether metacognitive judgments are related to strategy choices on the current problems and on the immediately following problems, and age-related differences in relations between metacognition and strategy choices. Data showed that both young and older adults were able to make accurate retrospective, but not prospective, judgments. Moreover, the accuracy of retrospective judgments was comparable in young and older adults when participants had to select and execute the better strategy. Metacognitive accuracy was even higher in older adults when participants had to only select the better strategy. Finally, low-confidence judgments on current items were more frequently followed by better strategy selection on immediately succeeding items than high-confidence judgments in both young and older adults. Implications of these findings to further our understanding of age-related differences and similarities in adults’ metacognitive monitoring and metacognitive regulation for strategy selection in the context of arithmetic problem solving are discussed.  相似文献   

18.
Unlike many sports, karate imposes pointing to a target with the lower limb. The nature of each sport could influence gait variables of sportsmen. The aim of this study was to examine the pointing accuracy of limb swing and the spatial and temporal parameters of the walking cycle during walking in karate experts (Group K, n=6) compared to accuracy of nonkarate sportsmen (Group S, n = 11). The second aim of this study was to compare the influence of this skill on the spatial and temporal parameters of the walking cycle between the two groups. The analysis was performed with a device composed of a gait analysis system (locometer) coupled to a lighted walkway. This system provides a measurement of the motor skill and the spatial and temporal gait during walking. Analysis for the pointing task indicated no differences between the Karate and the Sportsmen Groups during walking. Moreover, neither the spatial nor temporal characteristics of walking differed between the two groups. Karate does not therefore seem to develop motor programs specific to enhanced performance on this pointing task during walking or alter the walking cycle as compared to some other competitive sports.  相似文献   

19.
Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer’s or Parkinson’s disease. To further investigate aging’s effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one’s behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex.  相似文献   

20.
Eye movements of young and older adults during reading   总被引:1,自引:0,他引:1  
The eye movements of young and older adults were tracked as they read sentences varying in syntactic complexity. In Experiment 1, cleft object and object relative clause sentences were more difficult to process than cleft subject and subject relative clause sentences; however, older adults made many more regressions, resulting in increased regression path fixation times and total fixation times, than young adults while processing cleft object and object relative clause sentences. In Experiment 2, older adults experienced more difficulty than young adults while reading cleft and relative clause sentences with temporary syntactic ambiguities created by deleting the that complementizers. Regression analyses indicated that readers with smaller working memories need more regressions and longer fixation times to process cleft object and object relative clause sentences. These results suggest that age-associated declines in working memory do affect syntactic processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号