首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaze is an emergent visual feature. A person's gaze direction is perceived not just based on the rotation of their eyes, but also their head. At least among adults, this integrative process appears to be flexible such that one feature can be weighted more heavily than the other depending on the circumstances. Yet it is unclear how this weighting might vary across individuals or across development. When children engage emergent gaze, do they prioritize cues from the head and eyes similarly to adults? Is the perception of gaze among individuals with autism spectrum disorder (ASD) emergent, or is it reliant on a single feature? Sixty adults (M = 29.86 years‐of‐age), thirty‐seven typically developing children and adolescents (M = 9.3 years‐of‐age; range = 7–15), and eighteen children with ASD (M = 9.72 years‐of‐age; range = 7–15) viewed faces with leftward, rightward, or direct head rotations in conjunction with leftward or rightward pupil rotations, and then indicated whether the face was looking leftward or rightward. All individuals, across development and ASD status, used head rotation to infer gaze direction, albeit with some individual differences. However, the use of pupil rotation was heavily dependent on age. Finally, children with ASD used pupil rotation significantly less than typically developing (TD) children when inferring gaze direction, even after accounting for age. Our approach provides a novel framework for understanding individual and group differences in gaze as it is actually perceived—as an emergent feature. Furthermore, this study begins to address an important gap in ASD literature, taking the first look at emergent gaze perception in this population.  相似文献   

2.
The effect of dominance on upper limb (UL) kinematics has only been studied on scapular movements. Moreover, when an anatomical UL movement is performed in a specific plane, secondary movements in the remaining planes involuntarily occur. These secondary movements have not been previously evaluated. The aim of this study was to compare the kinematics of primary and secondary angles of dominant and non-dominant UL during anatomical movements in asymptomatic adults.25 asymptomatic adults performed 6 anatomical movements bilaterally: shoulder flexion-extension, abduction-adduction, horizontal abduction-adduction, internal-external rotation, elbow flexion-extension and wrist pronation-supination. Kinematics of the dominant and non-dominant UL were compared by their ranges of motion (ROM) and their angular waveforms (Coefficient of Multiple Correlations, CMC).The comparison between dominant and non-dominant UL kinematics showed different strategies of movement, most notably during elbow flexion-extension (CMC = 0.29): the dominant UL exhibited more pronation at maximal elbow flexion. Significant secondary angles were found on most of the UL anatomical movements; e.g. a secondary ROM of shoulder (humero-thoracic) external-internal rotation (69° ± 16°) was found when the subject intended to perform maximal shoulder abduction-adduction (119° ± 21°).Bias of dominance should be considered when comparing pathological limb to the controlateral one. Normative values of primary and secondary angles during anatomical movements could be used as a reference for future studies on UL of subjects with neurological or orthopedic pathologies.  相似文献   

3.
This study examined coordination of the spine and pelvis during lateral bending of the trunk in older adults. Thirty-four healthy subjects (17 young and 17 older adults) demonstrated lateral bending at a controlled speed while holding a bar at approximately 180 degrees of shoulder flexion. Kinematic data collection was completed on the thoracic spine, lumbar spine, and pelvis. The coupling angle was calculated to examine the thorax–lumbar, lumbar–pelvis, and thorax–pelvis coordination patterns. The older adults demonstrated a reduced range of motion (ROM) of the lumbar spine, while both groups revealed similar ROM in the thorax and in the pelvis. The coupling angle between the straightening and bending phases was different only for the older adults in the thorax–lumbar (23.4 ± 8.0 vs. −1.6 ± 4.4, p = 0.004) and the lumbar–pelvis (65.4 ± 7.2 vs. 86.1 ± 7.8, p = 0.001) coordination. However, there was no group difference in the thorax–pelvis coordination. These findings indicate that age-related changes in the lumbar region affect coordination patterns only during the bending phase. The older adults preserved a similar pattern of movement to the young adults during the straightening phase, but the coordination variability of the coupling angles was greater for the older adults than for the young adults. This movement pattern suggests that the older adults lacked consistent trunk control in an attempt to optimize lateral bending coordination.  相似文献   

4.
BackgroundOveruse accounts for 82% of injuries in military personnel, and these occur predominantly in the spine and lower limbs. While non-linear analyses have shown changes in overall stability of the movement during load carriage, individual joint contributions have not been studied. The concept of entropy compensation between task, organism and environmental constraints is studied at a joint level.Research questionThe aim of this study was to investigate whether using different methods of loading by military personnel would have an effect on the sample entropy of the joint ranges of motion.MethodsEleven male reserve infantry army soldiers (age: 22 ± 2 years; height: 1.80 ± 0.06 m; mass: 89.3 ± 14.4 kg) walked an outdoor, 800 m course under 5 load conditions: unloaded, 15 kg backpack, 25 kg backpack, 15 kg webbing and backpack and 25 kg webbing and backpack. Kinematic data was recorded at 240 Hz using the Xsens motion capture system. The ranges of motion (ROM) of the spine, hips and knee were calculated for each gait cycle. Mean ROM, coefficient of variation (CV) of the ROM and the sample entropy of the ROM were compared between conditions.ResultsSpine side flexion ROM decreased significantly from the control condition in all loaded conditions, while sample entropy of the spine side flexion ROM increased in some conditions with no significant change in CV. Conversely, the hip flexion ROM increased significantly from the control, while sample entropy of the hip flexion ROM decreased.SignificanceThese results suggest that entropy compensation may propagate at a joint level. Understanding that a decrease in certainty with which a joint angle is selected, may be accompanied by an increase at a neighbouring joint. This could be significant in monitoring injuries as a result of environmental or task constraints.  相似文献   

5.
PurposeGait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group.MethodsIn this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7 ± 9.6 years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2 ± 1) and 25 healthy age-matched controls using a 3-dimension gait analysis.ResultsMS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability.ConclusionUpper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms.  相似文献   

6.
Head flexion is destabilizing in older individuals during quiet stance, yet the effect head flexion has on gait is not known. The study examined whether head flexion and gait parameters were altered when walking freely and fixed to a visual target, at different walking speeds. 15 young (23 ± 4 years) and 16 older (76 ± 6 years) healthy females walked at three different walking speeds (slow, comfortable, and fast) under two visual conditions (natural and fixed [focusing on a visual target set at eye level]). Head flexion was assessed using 2D video analysis, whilst gait parameters (step length, double support time, step time, and gait stability ratio) were recorded during a 9 m flat walkway. A mixed design ANOVA was performed for each variable, with age as the between-subject factor and, visual condition and walking speed as within-subject factors. When walking freely, older displayed a greater need for head flexion between walking speeds (P < 0.05) when compared to young. Walking under fixed condition reduced head flexion at all walking speeds in the older (P < 0.05), but had no effect on the young (P > 0.05). Walking at different speeds showed no difference in head flexion when walking under either visual condition and had no effect on gait stability for both groups. Despite older displaying differences in head flexion between visual conditions, there was no effect on gait parameters. Walking speed presented trivial difference in head flexion in older females, whilst overall gait stability was unaffected by different walking speeds.  相似文献   

7.
Adolescent idiopathic scoliosis (AIS) is a complex deformity that often leads to loss of coordination and dynamic posture. However, there is a lack of understanding on inter-segmental coordination in AIS. The purpose of this study was to compare spinal range of motion (ROM), as well as the relations to coupling angles (CA) in the spinal region during trunk rotation, between AIS and control subjects. There were 14 subjects with right thoracic AIS and 18 control subjects who participated in the study. All subjects were asked to perform five repeated axial trunk rotations in standing while holding a bar. The outcome measures included ROM at the first thoracic spinous process (T1), the seventh thoracic spinous process (T7), the twelfth thoracic spinous process (T12), and the first sacrum spinous tubercle (S1) by the motion capture system. The CA in each spinal region (trunk, lumbar spine, and lower and upper thoraces) were analyzed while considering age and body mass index (BMI). The Cobb angle demonstrated positive moderate relationships with ROM at T7 (r = 0.62, p = 0.04) and the CA in the upper thorax (r = 0.69, p = 0.02) in the AIS group. There was no CA difference at the spinous processes between groups; however, the lumbar spine ROM significantly decreased in the AIS group (t = 2.40, p = 0.02). The BMI demonstrated moderate relationships on the lumbar spine (r = −0.67, p = 0.02) in the AIS group and the lower thorax (r = 0.59, p = 0.01) in the control group. The lumbar spine was significantly dissociated in the AIS group during trunk rotation, although the Cobb angle demonstrated positive relationships with ROM at T7. Collectively, the inter-segmental CA indicated that the AIS group compensated more independently to the right thoracic convexity.Mini abstractThe coordinated trunk rotations in the adolescent idiopathic scoliosis (AIS) group were compared with the control subjects. The lumbar spine motion was dissociated with the thorax in the AIS group and was negatively correlated with body mass index. Clinicians need to consider thorax convexity and dissociated lumbar motion for compensatory and rehabilitation strategies.  相似文献   

8.
In contrast to the cervical and lumbar region, the normal kinematics of the thoracic spine have not been thoroughly investigated. The aim of this study was to characterize normal multi-segmental continuous motion of the whole thoracolumbar spine, during a flexion maneuver, in young and elderly subjects. Forty-two healthy volunteers were analyzed: 21 young (age = 27.00 ± 3.96) and 21 elderly (age = 70.1 ± 3.85). Spinal motion was recorded with a motion-capture system and analyzed using a 3rd order polynomial function to approximate spinal curvature throughout the motion sequence. The average motion profiles of the two age groups were characterized. Flexion timing of the thoracic region of the spine, as compared to the lumbar spine and hips, was found to be different in the two age groups (p = 0.011): a delayed/sequential motion type was observed in most of the young, whereas mostly a simultaneous motion pattern was observed in the elderly subjects. A similar trend was observed in flexion of the lower thoracic segments (p = 0.017). Differences between age groups were also found for regional and segmental displacements and velocities. The reported characterization of the thoracic spine kinematics may in the future support identification of abnormal movement or be used to improve biomechanical models of the spine.  相似文献   

9.
Standing balance is often more unstable when visually pursuing a moving target than when fixating on a stationary one. These effects are common in both young and older adults when the head is restrained during visual task performance. The present study focused on the role of head motion on standing balance during smooth pursuit as a function of age. Three predictions were tested: a) standing balance is compromised to a greater extent in older than young adults by gaze target pursuit compared to fixation, b) older adults pursue a moving target with greater and more variable head rotation than young adults, and c) greater and more variable head rotation during the smooth pursuit task is associated with greater Center of Pressure (CoP) sway. Twenty-two (22) older (age: 71.7 ± 8.1, 12 M / 10 F) and twenty-three (23) young adults (age: 23.6 ± 2.5, 12 M / 11 F) stood on a force plate while either fixating a stationary or smoothly pursuing a horizontally moving target (31.9° peak-to-peak visual angle). CoP (Bertec Balance Plate), head kinematics (Vicon Motion Analysis) and head-unconstrained gaze (Pupil Labs Invisible) were synchronously recorded. The root means square (RMS) of CoP velocity increased during smooth pursuit compared to fixation regardless of age (p < .05), while the interquartile CoP range increased only in older and not in young participants (p < .05). We also calculated the head rotation range (peak to peak cycle amplitude) of motion and variability (SD of range of motion) across the cycles of the smooth pursuit task. Older adults pursued the moving target employing more variable (p = .022) head yaw rotation than young participants although the mean range of head rotation was similar between groups (p =. 077). The amplitude and variability of head yaw rotation did not correlate with CoP sway measures. Results suggest that head-free pursuing of a moving target decreased balance to a greater extent in old than young individuals when compared to fixation. Nevertheless, postural sway during head-free smooth pursuit was not associated with the extent or variability of head rotation.  相似文献   

10.
Visual search tasks support a special role for direct gaze in human cognition, while classic gaze judgement tasks suggest the congruency between head orientation and gaze direction plays a central role in gaze perception. Moreover, whether gaze direction can be accurately discriminated in the periphery using covert attention is unknown. In the present study, individual faces in frontal and in deviated head orientations with a direct or an averted gaze were flashed for 150 ms across the visual field; participants focused on a centred fixation while judging the gaze direction. Gaze discrimination speed and accuracy varied with head orientation and eccentricity. The limit of accurate gaze discrimination was less than ±6° eccentricity. Response times suggested a processing facilitation for direct gaze in fovea, irrespective of head orientation, however, by ±3° eccentricity, head orientation started biasing gaze judgements, and this bias increased with eccentricity. Results also suggested a special processing of frontal heads with direct gaze in central vision, rather than a general congruency effect between eye and head cues. Thus, while both head and eye cues contribute to gaze discrimination, their role differs with eccentricity.  相似文献   

11.
Falls contribute to injuries and reduced level of physical activity in older adults. During falls, the abrupt sensation of moving downward triggers a startle-like reaction that may interfere with protective response movements necessary to maintain balance. Startle reaction could be dampened by sensory pre-stimulation delivered immediately before a startling stimulus. This study investigated the neuromodulatory effects of pre-stimulation on postural/startle responses to drop perturbations of the standing support surface in relation to age.Ten younger and 10 older adults stood quietly on an elevated computer-controlled moveable platform. At an unpredictable time, participants were dropped vertically to elicit a startle-like response. Reactive drop perturbation trials without a pre-stimulus (control) were alternated with trials with acoustic pre-stimulus tone (PSI). A two-way mixed design analysis of variance comparing condition (control vs. PSI) X group (younger vs. older) was performed to analyze changes in muscle activation patterns, ground reaction force, and joint angular displacements.Compared to younger adults, older adults showed lower neck muscle electromyography amplitude reduction rate and incidence of response. Peak muscle activation in neck, upper arm, and hamstring muscles were reduced during PSI trials compared to control trials in both groups (p < 0.05). In addition, knee and hip joint flexion prior to ground contact was reduced in PSI trials compared to control (p < 0.05). During post-landing balance recovery, increased knee and hip flexion displacement and time to peak impact force were observed in PSI trials compared to control condition (p < 0.05).PSI reduced startle-induced muscle activation at proximal body segments and likely decreased joint flexion during abrupt downward vertical displacement perturbations of the body. Older adults retained the ability to modulate startle and postural responses but their neuromodulatory capacity was reduced compared with younger adults. Further research on the potential of applying PSI as a possible therapeutic tool to reduce the risk of fall-related injury is needed.  相似文献   

12.
The patellofemoral (PF) joint is susceptible to many pathologies resulting from acute injury, chronic disease and complications following surgical treatment of the knee. The objectives of this study were to describe case series measurements of patellar motion in healthy older adults as they performed three gait activities, determine patellar tendon angle and moment arm, and show if these quantities were activity dependent. A stereo radiography system was utilized to obtain the 3D PF kinematics of seventeen healthy people over 55 years of age (8F/9M, 66 ± 7.9 years old, 75.7 ± 20.5 kg) as they performed level walking, a step down, and a pivot turn. For a similar portion of the gait cycle, patellar flexion (6.2° ± 5.8) and average range of motion (ROM) (11.0° ± 5.9°) for walking with a step down was greater compared to the other gait activities (gait ROM 6.9° ± 4.3°, pivot ROM 5.7° ± 3.3°), while the average range of motion for patella tilt was greater during walking with a pivot turn (8.6° ± 3.9°). However, each subject displayed distinct PF kinematic trends during all activities with a few notable exceptions. Importantly, the knee extensor mechanism characteristics of patellar tendon angle and moment arm showed considerable variation across subjects but were largely unaltered by changing activities. The variation between subjects and the different behavior of the patella during the step down and pivot emphasized the need for analysis of a range of activities to reveal individual response to pathology and treatment in patellar maltracking and osteoarthritis.  相似文献   

13.
The purpose of this study was to clarify the properties of gaze and head movements during forehand stroke in table tennis. Collegiate table tennis players (n = 12) conducted forehand strokes toward a ball launched by a skilled experimenter. A total of ten trials were conducted for the experimental task. Horizontal and vertical movements of the ball, gaze, head and eye were analyzed from the image recorded by an eye tracking device. The results showed that participants did not always keep their gaze and head position on the ball throughout the entire ball path. Our results indicate that table tennis players tend to gaze at the ball in the initial ball-tracking phase. Furthermore, there was a significant negative correlation between eye and head position especially in the vertical direction. This result suggests that horizontal VOR is suppressed more than vertical VOR in ball-tracking during table tennis forehand stroke. Finally, multiple regression analysis showed that the effect of head position to gaze position was significantly higher than that of eye position. This result indicates that gaze position during forehand stroke could be associated with head position rather than eye position. Taken together, head movements may play an important role in maintaining the ball in a constant egocentric direction in table tennis forehand stroke.  相似文献   

14.
Biomechanical modelling and physiological studies suggest that various spinal muscle layers differ in their contribution to spine movement and stiffness. This study aimed to investigate the activation of deep and superficial muscles in stable and unstable task conditions. Nine healthy participants performed a task of controlling a metal ball on a plate fixed to the head in seated position. In unstable tasks, visual feedback was provided by mirrors to move the ball to the centre of the plate by small head movements and maintain the position for 3 s. Task difficulty was adjusted in a stepwise progression of difficulty using five surfaces with materials of decreasing resistance. In the stable condition, the ball was fixed to the plate's centre. EMG was recorded with surface (sternocleidomastoid, anterior scalenes, upper trapezius) and fine-wire electrodes (rectus capitis posterior major, obliquus inferior, multifidus, semispinalis cervicis, splenius capitis). The outcome variable was root mean square (RMS) EMG during the part of the task when the ball was maintained in the centre position. Results revealed greater cervical muscle activity in the unstable than stable conditions (p < 0.001, ηp2 = 0.746). Control of deep and superficial cervical muscles differed (p = 0.003, ηp2 = 0.354). Deep cervical muscle activity was greater with unstable tasks, but did not differ with task difficulty. In contrast, superficial cervical muscle activity increased in a stepwise manner with increasing challenge. These results support the notion that the central nervous system uses different strategies for control of deep versus superficial muscle layers of the cervical spine in association with instability.  相似文献   

15.
PurposeFoam Rolling (FR), aims to mimic the effects of manual therapy and tackle dysfunctions of the skeletal muscle and connective tissue. It has been shown to induce improvements in flexibility, but the underlying mechanisms are poorly understood. The aim of the present study was to further elucidate the acute, systemic and tissue-specific responses evoked by FR.MethodsIn a crossover study, 16 (34 ± 6y, 6f) participants received all of the following interventions in a random order: a) 2 × 60 seconds of FR at the anterior thigh, b) 2 × 60 seconds of passive static stretching of the anterior thigh (SS), and c) no intervention (CON). Maximal active and passive knee flexion range of motion (ROM), passive stiffness, sliding of fascial layers, as well as knee flexion angle of first subjectively perceived stretch sensation (FSS) were evaluated before and directly after each intervention.ResultsFlexibility increased only after, FR (active (+1.8 ± 1.9%) and passive ROM (+3.4 ± 2.7%), p = .006, respectively) and SS (passive ROM (+3.2 ± 3.5%), p = .002). Angle of FSS was altered following FR (+4.3° (95% CI: 1.4°–7.2°)) and SS (+6.7° (3.7°–9.6°)), while tissue stiffness remained unchanged after any intervention compared to baseline. Movement of the deepest layer (−5.7 mm (−11.3 mm to −0.1 mm)) as well as intrafascial sliding between deep and superficial layer (−4.9 mm (−9.mm to −0.7 mm)) decreased only after FR.ConclusionFR improved knee flexion ROM without altering passive stiffness, but modified the perception of stretch as well as the mobility of the deep layer of the fascia lata. The mechanisms leading to altered fascial sliding merit further investigation.  相似文献   

16.
BackgroundIndividuals with Developmental Coordination Disorder (DCD) experience difficulty with motor coordination and this affects their daily functioning. Research indicated inferior visuospatial processing and oculomotor control in DCD. As visual information is essential for locomotor control, more insight in the gaze behaviour of this population during walking is required and crucial for gaze training interventions as a possible means to improve daily functioning of children and adults with DCD.AimThis study explored differences and similarities in gaze behaviour during walking between typically developing young adults and those with DCD.Methods and proceduresTen young adults with DCD (age: 22.13 ± 0.64) and ten typically developing individuals (age: 22.00 ± 1.05) completed a walking task in which they had to place their feet on irregularly placed targets wearing eye tracking glasses.Outcomes and resultsIndividuals with DCD walked slower and demonstrated a different gaze strategy compared to their neurotypical peers as they fixated almost each and every target sequentially. Typically developing individuals, on the other hand, directed gaze further along the path and often fixated areas around the targets.Conclusions and implicationsDespite adequate walking performance in daily situations in young adults with DCD, fundamental control deficits persist into adulthood.What this paper adds?This paper is the first to demonstrate differences in gaze behaviour between young adults with DCD and typically developing individuals in a task that resembles a task of daily living, as previous research focused on laboratory tasks. This is a valuable finding as DCD has a clear impact on the daily life. Furthermore, this study demonstrated that the fundamental control deficits of DCD persist into adulthood despite frequent performance and practice of these daily tasks. Lastly, these findings might contribute to the therapeutic potential of gaze training interventions to improve the daily functioning of children and adults with DCD.  相似文献   

17.
A first-order theory T{{\mathcal T}} has the Independence Property provided T   \vdash (Q)(FT F1 ú. . .úFn){{{\mathcal T} \, \, \vdash (Q)(\Phi \Rightarrow {\Phi_1} \vee.\,.\,.\vee {\Phi_n})}} implies T   \vdash (Q)(FT Fi){{{\mathcal T} \, \, \vdash (Q)(\Phi \Rightarrow {\Phi_i})}} for some i whenever F,F1, . . . ,Fn{{\Phi,\Phi_1,\,.\,.\,.\,,\Phi_n}} are formulae of a suitable type and (Q) is any quantifier sequence. Variants of this property have been noticed for some time in logic programming and in linear programming.  相似文献   

18.
Observational learning has long been used to instruct individuals on how to perform a novice motor skill. Recently, research has shown a benefit to instructing learners to focus externally when viewing a video model (Asadi, Aiken, Heidari, & Kochackpour, 2021). Research has also highlighted the effectiveness of modeling correct gaze behaviors when learning a cognitive task (Jarodzka, van Gog, Dorr, Scheiter, & Gerjets, 2013). The purpose of the present study was to investigate the effectiveness of combining these two modalities. 40 individuals with a mean age of 21.77 ± 1.40 performed a novel motor task where they were asked to either focus internally or externally, and were provided with traditional instruction or were provided with an experienced performer's gaze behaviors while viewing a video demonstration. It was observed that both the external focus groups and the gaze instructed groups performed a basketball free-throw more accurately and had longer periods of quiet eye than an internal focus or traditional verbal instruction (p's < 0.05). Eye tracking also allowed for the assessment of attentional focus adherence. Participants focused on the instructed cues significantly more than irrelevant task aspects or a different focus types (p's < 0.05). These results highlight the effectiveness of cuing a learner to focus externally during observational learning. It also highlights the usefulness of providing correct gaze behaviors when observing a model.  相似文献   

19.
IntroductionMaintaining balance during gait allows subjects to minimize energy expenditure and avoid falls. Gait balance can be measured by assessing the relationship between the center of mass (COM) and center of pressure (COP) during gait. Demographics, skeletal and postural parameters are known to influence gait balance.PurposeWhat are the determinants of dynamic balance during gait in asymptomatic adults among skeletal and demographic parameters?Methods115 adults underwent 3D gait analysis and full-body biplanar X-rays. Angles between the COM-COP line and the vertical were calculated in frontal and sagittal planes during gait: maxima, minima, and ROM were evaluated. Full-body 3D reconstructions were obtained; skeletal and postural parameters of the spine (lumbar lordosis, thoracic kyphosis, sagittal vertical axis SVA), pelvis (pelvic tilt and incidence, acetabular orientation in the 3 planes) and lower limbs (neck shaft angle femoral and tibial torsions) were calculated. A univariate followed by a multivariate analysis were computed between the COM-COP parameters and skeletal and demographic parameters.ResultsThe univariate analysis showed that in the frontal plane, maximum (4.6°) of the COM-COP angle was significantly correlated with weight (r = 0.53), age (r = 0.28), height (r = 0.35), SVA (r = 0.23), T1T12 (r = 0.24) and pelvic width (r = 0.25).In the sagittal plane, maximum COM-COP (19.7 ± 2.8°) angle was significantly correlated to acetabular tilt (r = 0.25) and acetabular anteversion (r = 0.21). The multivariate analysis showed that, in the frontal plane, an increase in the maximum of the COM-COP angle was determined by a decreasing height (β = −0.28), an increasing weight (β = 0.48), being a male (β = −0.42), and an increasing posterior acetabular coverage (β = 0.22). In the sagittal plane, an increasing maximum COM-COP angle was determined by a decreasing height (β = −0.38) and an increasing SVA (β = 0.19).ConclusionFrontal imbalance appeared to be mainly correlated to demographic parameters. Sagittal imbalance was found to be correlated with weight, height, acetabular parameters and SVA. These results suggest that in addition to demographic parameters, acetabular parameters and SVA are important determinants of balance during gait.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号