首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《人类行为》2013,26(4):237-260
The effect of practice on the control of sequential and simultaneous multilimb aiming responses was studied. In one group (n = l0), subjects pushed hand levers and foot pedals 20 deg. (plus or minus 1.5 deg.) forward in the following order: left hand, right hand, left foot, right foot. In the other group (n = l0), all subjects pushed both levers and pedals forward simultaneously for the same distance. The goal for both groups was to reduce movement time (MT). Analysis of the displacement and velocity records showed that sequential movements were made quicker and with fewer movement corrections than simultaneous movements. With practice, both groups reduced the MT and the number of movement corrections, suggesting that the accuracy of the initial propulsive phase of the movement became more precise. In addition, temporal interlimb correlations increased with practice, suggesting the development of a coordination factor related to multilimb movements, but little support was shown for the gear-shift analogy.  相似文献   

2.
The effect of practice variations on spatial and temporal accuracy was investigated in both discrete and continuous aiming movements in the preferred hand of college-aged participants (N=25). In a completely within-subject design, participants made rapid reversal movements with a lightweight lever in the sagittal plane, practicing 20 degrees and 60 degrees movements in repeated (same distance) and alternating (switching between 20 degrees and 60 degrees) conditions. Movements were also made one at a time (discretely) or in sequences of 20 movements (continuously). Spatial constant error, spatial variable error, spatial overall error, the coefficient of variation, movement time, and the relative timing were calculated for each set of 20 movements and analyzed by within-subject analyses of variance. Movements in the repeated conditions for both discrete and continuous movements were more accurate and consistent compared to the alternating condition where the short movements were overshot and the long movements were undershot. Discrete movements were more spatially and temporally variable than continuous movements. The discrete and continuous movements showed different relative timing patterns, suggesting that the temporal structure of the motor program is affected by task characteristics.  相似文献   

3.
Hemispace asymmetries and laterality effects were examined on an arm positioning reproduction task. Sixteen male subjects were asked to reproduce both abductive and adductive positioning movements with the left or right arm within either the left or the right hemispace. Hemispace was manipulated using a 90 degrees head-rotation paradigm. A left hemispace advantage in positioning accuracy was predicted for both left and right arm movements on the grounds that the perceptual-motor control of positioning movements made in left hemispace is primarily mediated by the right hemisphere which is known to be advantageous for tasks which are spatial in nature (Heilman, Bowers, & Watson, 1984). No arm laterality effects were predicted to occur because the proximal musculature involved in the control of arm movements is innervated from both contralateral and ipsilateral cerebral hemispheres (Brinkman & Kuypers, 1973). Results showed that the predicted left hemispace advantage was evident for the right arm on the positioning variability measure alone, whereas it was absent for all other possible conditions on all error measures. Laterality (arm) effects were absent as predicted. The experiment also demonstrated a greater degradation of reproduction performance under the ′crossed" arm-hemispace conditions than under the ′uncrossed" conditions. A plausible explanation for the uncrossed advantage for the task is that under normal conditions, a single hemisphere is primarily responsible for both controlling the contralateral arm and directing attention to the contralateral hemispace, and consequently potential interhemispheric interference is minimized. A clear response bias effect in movement reproduction was also evident as a function of the direction of concurrent arm movement and head rotation. Arm movements made in the same direction as head rotation were systematically undershot in reproduction to a much greater degree than arm movements made in the opposite direction to head rotation.  相似文献   

4.
Summary Two experiments are reported in which we examined the hypothesis that the advantage of the right hand in target aiming arises from differences in impulse variability. Subjects made aiming movements with the left and right hands. The force requirements of the movements were manipulated through the addition of mass to the limb (Experiments 1 and 2) and through control of movement amplitude (Experiment 1). Although the addition of mass diminished performance (i. e., it increased movement times in Experiment 1 and increased error in Experiment 2), the two hands were not differently affected by the manipulation of required force. In spite of the fact that the right hand exhibited enhanced performance (i. e., lower movement times in Experiment 1 and greater accuracy in Experiment 2), these advantages were not reflected in kinematic measures of impulse variability.We are grateful to an anonymous reviewer for clarification of this distinction.  相似文献   

5.
This study extended earlier work by showing spatial assimilations in sequential bimanual aiming movements when the participant preplanned only the first movement of a two-movement sequence. Right-handed participants (n=20, aged 18 to 22 years) made rapid lever reversals of 20 degrees and 60 degrees singly and sequentially with an intermovement interval of 2.5 sec. Following blocked single practice of both movements in each hand (15 trials each), two sets of 30 sequential practice trials were completed. The sequences began with either the long or the short movement and the participant always knew the goal of the first movement. During the intermovement interval, the experimenter gave instructions to complete the sequence with a short movement, a long movement, or no movement in a random order. Compared to the single trials, both movements in the sequence overshot the short-distance and undershot the long-distance goal. Spatial errors increased when a change in the movement goal was required for the second movement in the sequence. The experiment demonstrated that separate planning of sequential aiming movements can reduce spatial assimilation effects, but interference due to practice organization and switching the task's goal must also be overcome in order to produce accurate aiming movements.  相似文献   

6.
Elite dancers perform highly skilled and consistent movements. These movements require effective regulation of the intrinsic and extrinsic forces acting within and on the body. Customized, compliant floors typically used in dance are assumed to enhance dance performance and reduce injury risk by dampening ground reaction forces during tasks such as landings. As floor compliance can affect the extrinsic forces applied to the body, secondary effects of floor properties may be observed in the movement consistency or kinematic variability exhibited during dance performance. The aim of this study was to investigate the effects of floor mechanical properties on lower extremity kinematic variability in dancers performing landing tasks. A vector coding technique was used to analyze sagittal plane knee and ankle joint kinematic variability, in a cohort of 12 pre-professional dancers, through discrete phases of drop landings from a height of 0.2 m. No effect on kinematic variability was observed between floors, indicating that dancers could accommodate the changing extrinsic floor conditions. Future research may consider repeat analysis under more dynamic task constraints with a less experienced cohort. However, knee/ankle joint kinematic variability was observed to increase late in the landing phase which was predominantly comprised of knee flexion coupled with the terminal range of ankle dorsiflexion. These findings may be the result of greater neural input late in the landing phase as opposed to the suggested passive mechanical interaction of the foot and ankle complex at initial contact with a floor. Analysis of joint coordination in discrete movement phases may be of benefit in identifying intrinsic sources of variability in dynamic tasks that involve multiple movement phases.  相似文献   

7.
Huh CY 《Brain and cognition》2004,55(2):322-324
The present study examined the interaction between limb movements in space. The amount of interaction was measured by how much moving one limb affected the movement of another limb. Participants were 24 right-handed university students (19 female, mean age=19 years). The task was to draw lines with the right hand while moving another limb in lines or circles of different sizes. Significant coupling effects were found between both homologous and non-homologous limbs. Movement of the right hand was most strongly affected by the left hand, less by the right foot, and least by the left foot, consistent with the functional cerebral distance model. This effect of limb was observed only in the major dimension along which movement was not restrained. Both the limb and dimension effects were reduced when the trajectory of motion decreased in size.  相似文献   

8.
The retention characteristics of several cues thought to underlie movement reproduction ability were examined and the results were discussed in terms of two models of motor short-term memory (Laabs, 1973; Pepper & Herman, 1970). Trace decay was indexed by constant error and not variable error. It appeared that the movement cues studied all had access to the central processing capacity in that forgetting did not occur until rehearsal was blocked by the introduction of a secondary task. However, there was some evidence to indicate that different cues are centrally represented in varying degrees of exactness. In this respect reliance on active movement cues and location cues produced better reproduction than passive movement and distance cues, respectively. The existence of an adaptation level established from the range of movement utilized was supported, and short movements were more dependent on central processing capacity than were long movements.  相似文献   

9.
The question investigated was whether or not eye movements accompanied by abnormal retinal image movements, movements that are either or both at a different rate or in a different direction than the eye movement, predictably lead to perceived movement. Os reported whether or not they saw a visual target move when the movement of the target was either dependent on and simultaneous with their eye movements or when the target movement was independent of their eye movements. In the main experiment, observations were made when the ratio between eye and target movement fem/tm) was 2/5, 1/5, 1/10, 1/20, and 0. All these ratios were tested when the direction of the target movement was in the same (H+), opposite (H?), and at right angles to (V+, V?) the movement of the eyes. Eye movements, target movements, and reports of target movement were recorded. Results indicate that a discrepancy between eye and target movement greater than 20% predictably leads to perceived target movement, whereas a discrepancy of 5% or less rarely leads to perceived movement. The results are interpreted as support for the operation of a compensatory mechanism during eye movements.  相似文献   

10.
Many studies have shown that subjects can correct their own errors of movement more quickly than they can react to external stimuli. In the control of movements, three general categories of feedback have been defined as follows: (a) knowledge of results, primarily visually mediated, (b) proprioceptive or kinesthetic, such as from muscle spindles and joint receptors, and (c) corollary discharge or efference copy within the central nervous system. Experiments were conducted on eight normal human subjects to study the effects of these feedbacks on simple RT, choice RT, and error correction time. The movement used was plantarflexion and dorsiflexion of the ankle joint. The feedback loops were modified (a) by inverting the visual display to alter the subject's perception of results and (b) by applying a 100-Hz vibration simultaneously to both flexor and extensor muscles of the ankle joint. Central processing was altered by giving the subjects moderated doses of alcohol (blood-alcohol concentration levels of up to.10%). Vibration and alcohol increased both simple and choice RT but not the error correction time. These data reinforce the concept that there is a central pathway which can mediate error correcting responses.  相似文献   

11.
We investigated the influence of observed movements on executed movements in a task requiring lifting one foot from the floor while maintaining whole-body balance. Sixteen young participants (20–30 years) performed foot lift movements, which were either cued symbolically by a letter (L/R, indicating to lift the left/right foot) or by a short movie showing a foot lift movement. In the symbol cue condition, stimuli from the movie cue condition were used as distractors, and vice versa. Anticipatory postural adjustments (APAs) and actual foot lifts were recorded using force plates and optical motion capture. Foot lift responses were generally faster in response to the movie compared to the symbol cue condition. Moreover, incongruent movement distractors interfered with performance in the symbol cue condition, as shown by longer response times and increased number of APAs. Latencies of the first (potentially wrong) APA in a trial were shorter for movie compared to symbol cues but were not affected by cue-distractor congruency. Amplitude of the first APA was smaller when it was followed by additional APAs compared to trials with a single APA. Our results show that automatic imitation tendencies are integrated with postural control in a task with balance constraints. Analysis of the number, timing and amplitude of APAs indicates that conflicts between intended and observed movements are not resolved at a purely cognitive level but directly influence overt motor performance, emphasizing the intimate link between perception, cognition and action.  相似文献   

12.
Comparisons were made of voluntary movements of the right and left arms in normal human subjects. A series of movements of different amplitudes, made at the subject’s own speed, was performed with one limb. After a rest period, the same series was repeated with the contralateral limb. The relation between movement peak velocity and movement amplitude was linear and was the same for both arms. With repeated testing over periods up to two months, the slope of the peak velocity—amplitude relation decreased during the first week, thereafter remaining unchanged. In a second series of experiments, six normal subjects continuously wore a 1 lb (0.45 kg) weight strapped to their left (non-dominant) forearm for up to 1 week. This resulted in an increase in the slope of the peak-velocity/amplitude relation in this arm. A parallel change occurred in movements made independently by the right (non-loaded) arm. A similar matching of movement performance of the two limbs was seen following removal of the weight. The data is interpreted as providing support for the hypothesis that there is a single movement “command” which is applied to both limbs. The interaction of this command with the limbs which have similar second-order mechanical properties yields similar movements even when they are made independently.  相似文献   

13.
Comparisons were made of voluntary movements of the right and left arms in normal human subjects. A series of movements of different amplitudes, made at the subject' own speed, was performed with one limb. After a rest period, the same series was repeated with the contralateral limb. The relation between movement peak velocity and movement amplitude was linear and was the same for both arms. With repeated testing over periods up to two months, the slope of the peak velocity-amplitude relation decreased during the first week, thereafter remaining unchanged. In a second series of experiments, six normal subjects continuously wore a 1 lb (0.45 kg) weight strapped to their left (non-dominant) forearm for up to 1 week. This resulted in an increase in the slope of the peak-velocity/amplitude relation in this arm. A parallel change occurred in movements made independently by the right (non-loaded) arm. A similar matching of movement performance of the two limbs was seen following removal of the weight. The data is interpreted as proving support for the hypothesis that there is a single movement "command" which is applied to both limbs. The interaction of this command with the limbs which have similar second-order mechanical properties yields similar movements even when they are made independently.  相似文献   

14.
In 2 experiments, spatial error detection capability and movement accuracy were investigated in both single and bimanual rapid aiming movements. In both experiments, right-handed college-age participants (N = 40 [Experiment 1]; N = 24 [Experiment 2]) used light, aluminum levers to make quick single and dual reversal movements in the sagittal plane in a time to reversal of 210 ms to either the same or different target locations involving identical (Experiment 1) or mirror-image (Experiment 2) movements. In Experiment 1, the shorter-distance limb overshot the target by 15-23&percent; when paired with a limb traveling at least 20 degrees farther, but no spatial assimilations were shown when movements differed by 20 degrees or less. In Experiment 2, the shorter-distance limb overshot 22-29&percent; when paired with a limb traveling 20 degrees farther, but spatial assimilations were not mitigated when both limbs moved to the same target position. Participants underestimated movement amplitude in all dual conditions but particularly when spatial assimilations were noted. Correlations between actual and estimated errors decreased from single to dual trials in both experiments. The findings suggest that spatial assimilations are caused by bimanual differences in movement amplitude, regardless of movement direction, and that individuals have greater difficulty identifying errors in simultaneous actions, especially when spatial assimilations are present, than identifying errors in single-limb actions.  相似文献   

15.
It has been shown that, even for very fast and short duration movements, seeing one's hand in peripheral vision, or a cursor representing it on a video screen, resulted in a better direction accuracy of a manual aiming movement than when the task was performed while only the target was visible. However, it is still unclear whether this was caused by on-line or off-line processes. Through a novel series of analyses, the goal of the present study was to shed some light on this issue. We replicated previous results showing that the visual information concerning one's movement, which is available between 40 degrees and 25 degrees of visual angle, is not useful to ensure direction accuracy of video-aiming movements, whereas visual afferent information available between 40 degrees and 15 degrees of visual angle improved direction accuracy over a target-only condition. In addition, endpoint variability on the direction component of the task was scaled to direction variability observed at peak movement velocity. Similar observations were made in a second experiment when the position of the cursor was translated to the left or to the right as soon as it left the starting base. Further, the data showed no evidence of on-line correction to the direction dimension of the task for the translated trials. Taken together, the results of the two experiments strongly suggest that, for fast video-aiming movements, the information concerning one's movement that is available in peripheral vision is used off-line.  相似文献   

16.
This experiment examined whether rapid arm movements can be corrected in response to a change in target position that occurs just prior to movement onset, during saccadic suppression of displacement. Because the threshold of retinal input reaches its highest magnitude at that time, displacement of the visual target of a saccade is not perceived. Subjects (N = 6) were instructed to perform very rapid arm movements toward visual targets located 16, 20, and 24 degrees from midline (on average, movement time was 208 ms). On some trials the 20 degrees target was displaced 4 degrees either to the right or to the left during saccadic suppression. For double-step trials, arm movements did not deviate from their original trajectory. Movement endpoints and movement structure (i.e., velocity-and acceleration-time profiles) were similar whether or not target displacements occurred, showing the failure of proprioceptive signals or internal feedback loops to correct the arm trajectory. Following this movement, terminal spatially oriented movements corrected the direction of the initial movement (as compared with the single-step control trials) when the target eccentricity decreased by 4 degrees. Subjects were unaware of these spatial corrections. Therefore, spatial corrections of hand position were driven by the goal level of the task, which was updated by oculomotor corrective responses when a target shift occurred.  相似文献   

17.
In Experiment 1, the author extended earlier work by investigating spatial assimilations in sequential aiming movements when participants were able to preplan only the 1st movement of a 2-movement sequence. Right-handed participants (N = 20) aged 18-22 years tried unimanual rapid lever reversals of 20 degrees and 60 degrees with an intermovement interval of 2.5 s. Following the 1st movement, participants made a same-distance movement, different-distance movement, or no movement in a randomly determined order. Participants overshot the short-distance target and undershot the long-distance target for both movements in the sequence, but the errors were greater when the 2nd movement differed from the 1st one. In Experiment 2, right-handed participants (N = 20) demonstrated greater assimilation effects after random practice than after blocked practice of both same-distances (20 degrees -20 degrees and 60 degrees -60 degrees ) and different-distances (20 degrees -60 degrees and 60 degrees -20 degrees ) sequences, although spatial errors were greater in different-distances conditions than in same-distances conditions. Overall, the experiments showed that parameter-value switching and practice organization are 2 major sources of spatial inaccuracy in sequential aiming movements.  相似文献   

18.
The study investigated how children with heavy prenatal alcohol exposure regulate movement speed and accuracy during goal-directed movements. 16 children ages 7 to 17 years with confirmed histories of heavy in utero alcohol exposure, and 21 nonalcohol-exposed control children completed a series of reciprocal tapping movements between two spatial targets. 5 different targets sets were presented, representing a range of task difficulty between 2 and 6 bits of information. Estimates of percent error rate, movement time, slope, and linear fit of the resulting curve confirmed that for goal-directed, reciprocal tapping responses, performance of the group with prenatal alcohol exposure was described by a linear function, as predicted by Fitts' law, by sacrificing movement accuracy. The index of performance was the same for the two groups: it initially increased, then leveled off for more difficult movements.  相似文献   

19.
Ankle movements in the frontal plane are less prominent though not less relevant than movements in the plantar or dorsal flexion direction. Walking on uneven terrains and standing on narrow stances are examples of circumstances likely imposing marked demands on the ankle medio-lateral stabilization. Following our previous evidence associating lateral bodily sways in quiet standing to activation of the medial gastrocnemius (MG) muscle, in this study we ask: how large is the MG contribution to ankle torque in the frontal plane? By arranging stimulation electrodes in a selective configuration, current pulses were applied primarily to the MG nerve branch of ten subjects. The contribution of populations of MG motor units of progressively smaller recruitment threshold to ankle torque was evaluated by increasing the stimulation amplitude by fixed amounts. From smallest intensities (12–32 mA) leading to the firstly observable MG twitches in force-plate recordings, current pulses reached intensities (56–90 mA) below which twitches in other muscles could not be observed from the skin. Key results showed a substantial MG torque contribution tending to rotate upward the foot medial aspect (ankle inversion). Nerve stimulation further revealed a linear relationship between the peak torque of ankle plantar flexion and inversion, across participants (Pearson R > .81, p < .01). Specifically, regardless of the current intensity applied, the peak torque of ankle inversion amounted to about 13% of plantar flexion peak torque. Physiologically, these results provide experimental evidence that MG activation may contribute to stabilize the body in the frontal plane, especially under situations of challenged stability.  相似文献   

20.
Visual control of discrete aiming movements   总被引:3,自引:0,他引:3  
An experiment is reported which investigated the visual control of discrete rapid arm movements. Subjects were required to move as rapidly as possible to several target width-movement distance combinations under both visual and non-visual conditions. The movement time (MT) data were supportive of Fitts' Law in that MT was linearly related and highly correlated to the Index of Difficulty (ID). MT was also similar for different target width-distance combinations sharing the same ID value. The error rate analysis, which compared visual to non-visual perfromance, indicated that vision was only used, and to varying degrees, when MT exceeded 200 ms (3.58 ID level). There was some evidence that vision was differentially used within target width-distance combinations sharing the same ID. Estimates of endpoint variability generally reflected the results of the error rate analysis. These results do not support the discrete correction model of Fitts' Law proposed by Keele (1968).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号