首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Timing variability in continuous drawing tasks has not been found to be correlated with timing variability in repetitive finger tapping in recent studies (S. D. Robertson et al., 1999; H. N. Zelaznik, R. M. C. Spencer, & R. B. Ivry, 2002). Furthermore, the central component of timing variability, as measured by the slope of the timing variance versus the square of the timed interval, differed for tapping and drawing tasks. On the basis of those results, the authors posited that timing in tapping is explicit and as such uses a central representation of the interval to be timed, whereas timing in drawing tasks is implicit, that is, the temporal component is an emergent property of the trajectory produced. The authors examined that hypothesis in the present study by determining the linear relationship between timing variance and squared duration for tapping, circle-drawing, and line-drawing tasks. Participants (N = 50) performed 1 of 5 tasks: finger tapping, line drawing in the x dimension, line drawing in the y dimension, continuous circle drawing timed in the x dimension, or continuous circle drawing timed in the y dimension. The slopes differed significantly between finger tapping, line drawing, and circle drawing, suggesting separable sources of timing variability. The slopes of the 2 circle-drawing tasks did not differ from one another, nor did the slopes of the 2 line-drawing tasks differ significantly, suggesting a shared timing process within those tasks. Those results are evidence of a high degree of specificity in timing processes.  相似文献   

2.
Differences in timing control processes between tapping and circle drawing have been extensively documented during continuation timing. Differences between event and emergent control processes have also been documented for synchronization timing using emergent tasks that have minimal event-related information. However, it is not known whether the original circle-drawing task also behaves differently than tapping during synchronization. In this experiment, 10 participants performed a table-tapping and a continuous circle-drawing task to an auditory metronome. Synchronization performance was assessed via the value and variability of asynchronies. Synchronization was substantially more difficult in circle drawing than in tapping. Participants drawing timed circles exhibited drift in synchronization error and did not maintain a consistent phase relationship with the metronome. An analysis of temporal anchoring revealed that timing to the timing target was not more accurate than timing to other locations on the circle trajectory. The authors conclude that participants were not able to synchronize movement with metronome tones in the circle-drawing task despite other findings that cyclical tasks do exhibit auditory motor synchronization, because the circle-drawing task is unique and absent of event and cycle position information.  相似文献   

3.
The authors manipulated the width of a timing target in continuous circle drawing to determine whether a more stringent spatial-timing criterion would produce an increase in participants' (N = 30) temporal variability. They also examined the effect of the computational method of determining cycle duration. There was no effect of spatial precision on temporal variability in circle drawing, and tapping and circle drawing were found to use the same criterion. Those findings lend strong support to the earlier view of R. B. Ivry, R. M. Spencer, H. N. Zelaznik, and J. Diedrichsen (2002), who argued that continuous tasks such as circle drawing are timed differently from discrete-like tasks such as tapping. Therefore, the results of the present study provide support for the event and emergent timing frameworks.  相似文献   

4.
The authors manipulated the width of a timing target in continuous circle drawing to determine whether a more stringent spatial-timing criterion would produce an increase in participants' (N = 30) temporal variability. They also examined the effect of the computational method of determining cycle duration. There was no effect of spatial precision on temporal variability in circle drawing, and tapping and circle drawing were found to use the same criterion. Those findings lend strong support to the earlier view of R. B. Ivry, R. M. Spencer, H. N. Zelaznik, and J. Diedrichsen (2002), who argued that continuous tasks such as circle drawing are timed differently from discrete-like tasks such as tapping. Therefore, the results of the present study provide support for the event and emergent timing frameworks.  相似文献   

5.
It has been hypothesized that timing in tapping utilizes event timing; a clock-like process, whereas timing in circle drawing is emergent. Three experiments examined timing in tapping and circle drawing by the dominant and non-dominant hand. Participants were right-hand dominant college aged males and females. The relationship between variance and the square of the timed interval (the Weber fraction), thought to capture clock-like timekeeping processes, was compared. Furthermore, timing variance was decomposed into a clock and a motor component. The slopes for timing were different for dominant hand tapping and circle drawing, but equal for non-dominant and dominant hand tapping. Negative lag one covariance, consistent with motor implementation variability, was found for non-dominant but not for dominant hand circle drawing (Experiment 1). Practice did not influence this relation (Experiment 2). A significant correlation for clock variability was found between non-dominant hand circle drawing and tapping (Experiment 3). Collectively, these findings indicate that event timing is shareable across hands while emergent timing is specific to an effector. Emergent timing does not appear to be obligatory for the non-dominant hand in circle drawing. We suggest that the use of emergent timing might depend upon the extensive practice experienced by a person's dominant hand.  相似文献   

6.
Four experiments explored the hypothesis that temporal processes may be represented and controlled explicitly or implicitly. Tasks hypothesized to require explicit timing were duration discrimination, tapping, and intermittent circle drawing. In contrast, it was hypothesized that timing control during continuous circle drawing does not rely on an explicit temporal representation; rather, temporal control is an emergent property of other control processes (i.e., timing is controlled implicitly). Temporal consistency on the tapping and intermittent drawing tasks was related, and performance on both of these tasks was correlated with temporal acuity on an auditory duration discrimination task. However, timing variability of these 3 tasks was not correlated with timing variability of continuous circle drawing. These results support the hypothesized distinction between explicit and implicit temporal representations.  相似文献   

7.
Accurate timing performance during auditory–motor synchronization has been well documented for finger tapping tasks. It is believed that information pertaining to an event in movement production aids in detecting and correcting for errors between movement cycle completion and the metronome tone. Tasks with minimal event-related information exhibit more variable synchronization and less rapid error correction. Recent work from our laboratory has indicated that a task purportedly lacking an event structure (circle drawing) did not exhibit accurate synchronization or error correction (Studenka & Zelaznik, in press). In the present paper we report on two experiments examining synchronization in tapping and circle drawing tasks. In Experiment 1, error correction processes of an event-timed tapping timing task and an emergently timed circle drawing timing task were examined. Rapid and complete error correction was seen for the tapping, but not for the circle drawing task. In Experiment 2, a perceptual event was added to delineate a cycle in circle drawing, and the perceptual event of table contact was removed from the tapping task. The inclusion of an event produced a marked improvement in synchronization error correction for circle drawing, and the removal of tactile feedback (taking away an event) slightly reduced the error correction response of tapping. Furthermore, the task kinematics of circle drawing remained smooth providing evidence that event structure can be kinematic or perceptual in nature. Thus, synchronization and error correction, characteristic of event timing (Ivry, Spencer, Zelaznik, & Diedrichsen, 2002; Repp, 2005), depends upon the presence of a distinguishable source of sensory information at the timing goal.  相似文献   

8.
It has been suggested that the temporal control of rhythmic unimanual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are an emergent property, whereas for tasks that involve discontinuities timing is an explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1Hz and 1.7Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively.  相似文献   

9.
R. Ivry, R. M. Spencer, H. N. Zelaznik, and J. Diedrichsen (2002) have proposed a distinction between timed movements in which a temporal representation is part of the task goal (event timing) and those in which timing properties are emergent. The issue addressed in the present experiment was how timing in conditions conducive to emergent timing becomes established. According to what the authors term the transformation hypothesis, timing initially requires an event-based representation when the temporal goal is defined externally (e.g., by a metronome), but over the first few movement cycles, control processes become established that allow timing to become emergent. Different groups of participants (N = 84) executed either 1 timed interval, 4 timed intervals, or 2 timed intervals separated by a pause. They produced the intervals by either circle drawing, a task associated with emergent timing, or tapping, a task associated with event timing. Analyses of movement variability suggested that similar timing processes were used in the 2 tasks only during the 1st interval. Those results are consistent with the transformation hypothesis and lead to the inference that the transition from event-based control to emergent timing can occur rapidly during continuous movements.  相似文献   

10.
An internal clock-like process has been implicated in the control of rhythmic movements performed for short (250-2,000 ms) time scales. However, in the past decade, it has been claimed that a clock-like central timing mechanism is not required for smooth cyclical movements. The distinguishing characteristic delineating clock-like (event) from non-clock-like (emergent) timing is thought to be the kinematic differences between tapping (discrete-like) and circle drawing (smooth). In the archetypal event-timed task (tapping), presence of perceptual events is confounded with the discrete kinematics of movement (table contact). Recently, it has been suggested that discrete perceptual events help participants synchronize with a metronome. However, whether discrete tactile events directly elicit event timing has yet to be determined. In the present study, we examined whether a tactile event inserted into the circle drawing timing task could elicit event timing in a self-paced (continuation) timing task. For a majority of participants, inserting an event into the circle drawing task elicited timing behaviour consistent with the idea that an internal timekeeper was employed (a correlation of circle drawing with tapping). Additionally, some participants exhibited characteristics of event timing in the typically emergently timed circle drawing task. We conclude that the use of event timing can be influenced by the insertion of perceptual events, and it also exhibits persistence over time and over tasks within certain individuals.  相似文献   

11.
An internal clock-like process has been implicated in the control of rhythmic movements performed for short (250–2,000 ms) time scales. However, in the past decade, it has been claimed that a clock-like central timing mechanism is not required for smooth cyclical movements. The distinguishing characteristic delineating clock-like (event) from non-clock-like (emergent) timing is thought to be the kinematic differences between tapping (discrete-like) and circle drawing (smooth). In the archetypal event-timed task (tapping), presence of perceptual events is confounded with the discrete kinematics of movement (table contact). Recently, it has been suggested that discrete perceptual events help participants synchronize with a metronome. However, whether discrete tactile events directly elicit event timing has yet to be determined. In the present study, we examined whether a tactile event inserted into the circle drawing timing task could elicit event timing in a self-paced (continuation) timing task. For a majority of participants, inserting an event into the circle drawing task elicited timing behaviour consistent with the idea that an internal timekeeper was employed (a correlation of circle drawing with tapping). Additionally, some participants exhibited characteristics of event timing in the typically emergently timed circle drawing task. We conclude that the use of event timing can be influenced by the insertion of perceptual events, and it also exhibits persistence over time and over tasks within certain individuals.  相似文献   

12.
Continuous circle drawing is considered a paragon of emergent timing, whereas the timing of finger tapping is said to be event-based. Synchronization with a metronome, however, must to some extent be event-based for both types of movement. Because the target events in the movement trajectory are more poorly defined in circle drawing than in tapping, circle drawing shows more variable asynchronies with a metronome than does tapping. One factor that may have contributed to high variability in past studies is that circle size, drawing direction, and target point were prescribed and perhaps outside the comfort range. In the present study, participants were free to choose most comfortable settings of these parameters for two continuously drawn shapes, circles and infinity signs, while synchronizing with a regular or intermittently perturbed metronome at four different tempi. Results showed that preferred circle sizes were generally smaller than in previous studies but tended to increase as tempo decreased. Synchronization results were similar for circles and infinity signs, and similar to earlier results for circles drawn within a fixed template (Repp & Steinman, 2010). Comparison with tapping data still showed drawing to exhibit much greater variability and persistence of asynchronies as well as slower phase correction in response to phase shifts in the metronome. With comfort level ruled out as a factor, these differences can now be attributed more confidently to differences in event definition and/or movement dynamics.  相似文献   

13.
Recently, researchers have discovered that individuals who are consistent timers in a tapping task are not necessarily consistent timers when they perform a continuous drawing task. In other words, nonsignificant correlations were found among tapping and drawing movements for timing precision (S. D. Robertson et al., 1999). In the present experiment, the authors investigated whether or not consistency in timing for tapping and drawing was correlated when participants (N = 24) were allowed to move at their preferred rate of movement. There were no significant correlations between tapping and drawing in terms of timing precision. That result lends further support to the notion that timing behavior is specific to the nature of the task, and thus further weakens the idea that timing is a generalized ability that can be imposed on a variety of different types of tasks.  相似文献   

14.
In rapid finger tapping, occasional intertap intervals of about twice the normal length or even longer, called blockings, can be observed. Skilled rapid tapping requires that flexor and extensor activity be timed so that they coincide with certain phases of the finger movement. In the present study, the hypothesis examined was that blockings are associated with a deviation from the proper timing relations between the more proximal signals (electromyographic [EMG] bursts) and the more distal signal (position-time curve of the finger). Participants (N = 8) performed up-and-down tapping. Blockings were compared with the preceding normal tapping cycles; a temporal forward shift of the flexor burst in the time interval between two kinematic landmarks—the lifting of the finger and the reversal of the movement—was found consistently in the blockings The phase shift of the flexor burst relative to the kinematic landmarks did not develop gradually in the course of the tapping cycles that preceded the blocking but was an abrupt deviation, which suggests that blockings occur with an increased likelihood as the extremes of the normal variability of the phase relation are approached.  相似文献   

15.
It has been claimed that rhythmic tapping and circle drawing represent fundamentally different timing processes (event-based and emergent, respectively) and also that circle drawing is difficult to synchronize with a metronome and exhibits little phase correction. In the present study, musically trained participants tapped with their left hands, drew circles with their right (dominant) hands, and also performed both tasks simultaneously. In Experiment 1, they synchronized with a metronome and then continued on their own, whereas in Experiment 2, they synchronized with a metronome containing phase perturbations. Circle drawing generally exhibited reliable synchronization, although with greater variability than tapping, and also showed a clear phase-correction response that evolved gradually during the cycle immediately following a perturbation. When carried out simultaneously in synchrony, with or without a metronome, the two tasks affected each other in some ways but retained their distinctive timing characteristics. This shows that event-based and emergent timing can coexist in a dual-task situation. Furthermore, the authors argue that the two timing modes usually coexist in each individual task, although one mode is often dominant.  相似文献   

16.
Three experiments were conducted to examine whether timing processes can be shared by continuous tapping and drawing tasks. In all 3 experiments, temporal precision in tapping was not related to temporal precision in continuous drawing. There were modest correlations among the tapping tasks, and there were significant correlations among the drawing tasks. In Experiment 3, the function relating timing variance to the square of the observed movement duration for tapping was different from that for drawing. The conclusions drawn were that timing is not an ability to be shared by a variety of tasks but instead that the temporal qualities of skilled movement are the result of the specific processes necessary to produce a trajectory. These results are consistent with the idea that timing is an emergent property of movement.  相似文献   

17.
Fractal models for event-based and dynamical timers   总被引:2,自引:0,他引:2  
Some recent papers proposed to distinguish between event-based and emergent timing. Event-based timing is conceived as prescribed by events produced by a central clock, and seems to be used in discrete tasks (e.g., finger tapping). Emergent or dynamical timing refers to the exploitation of the dynamical properties of effectors, and is typically used in continuous tasks (e.g., circle drawing). The analysis of period series suggested that both timing control processes possess fractal properties, characterized by self-similarity and long-range dependence. The aim of this article is to present two models that produce period series presenting the statistical properties previously evidenced in discrete and continuous rhythmic tasks. The first one is an adaptation of the classical activation/threshold models, including a plateau-like evolution of the threshold over time. The second one is a hybrid limit-cycle model, including a time-dependent linear stiffness parameter. Both models reproduced satisfactorily the spectral signatures of event-based and dynamical timing processes, respectively. The models also produced auto-correlation functions similar to those experimentally observed. Using ARFIMA modeling we show that these simulated series possess fractal properties. We suggest in conclusion some possible extensions of this modeling approach, to account for the effects of metronomic pacing, or to analyze bimanual coordination.  相似文献   

18.
One of the questions yet to be fully understood is to what extent the properties of the sensory and the movement information interact to facilitate sensorimotor integration. In this study, we examined the relative contribution of the continuity compatibility between motor goals and their sensory outcomes in timing variability. The variability of inter-response intervals was measured in a synchronization-continuation paradigm. Participants performed two repetitive movement tasks whereby they drew circles either using continuous or discontinuous self-paced movements while receiving discrete or continuous auditory feedback. The results demonstrated that the effect of perceptual-motor continuity compatibility may be limited in self-paced auditory-motor synchronization as timing variability was not significantly influenced by the continuity of the feedback or the continuity compatibility between feedback and the movement produced. In addition, results suggested that the presence of salient perceptual events marking the completion of the time intervals elicited a common timing process in both continuous and discontinuous circle drawing, regardless of the continuity of the auditory feedback. These findings open a new line of investigation into the role of the discriminability and reliability of the event-based information in determining the nature of the timing mechanisms engaged in continuous and discontinuous self-paced rhythmic movements.  相似文献   

19.
In 3 experiments the interdependencies between timing and force production in unimanual paced and self-paced rhythmic tapping tasks were examined as participants (N = 6 in each experiment) tapped (a) to 1 of 3 target periods (333 ms, 500 ms, and 1,000 ms), while they simultaneously produced a constant peak force (PF) over a 50-s trial; (b) to produce 1 of 3 target forces (5, 10, and 15 N) at their preferred frequency, while keeping their rhythm as invariant as possible; and (c) to all combinations of target force and period. The results showed that (a) magnitudes of force and period were largely independent; (b) variability in timing increased proportionally with tapping period, and the variability in force increased with peak force; (c) force variability decreased at faster tapping rates; and (d) timing variability decreased with increasing force levels, (e) Analysis of tap-to-tap variability revealed adjustments over sequences of taps and an acceleration in the tapping rate in unpaced conditions. The interdependencies of force and time are discussed with respect to the challenges they provide for an oscillator-based account.  相似文献   

20.
Recently, researchers have discovered that individuals who are consistent timers in a tapping task are not necessarily consistent timers when they perform a continuous drawing task. In other words, nonsignificant correlations were found among tapping and drawing movements for timing precision (S. D. Robertson et al., 1999). In the present experiment, the authors investigated whether or not consistency in timing for tapping and drawing was correlated when participants (N = 24) were allowed to move at their preferred rate of movement. There were no significant correlations between tapping and drawing in terms of timing precision. That result lends further support to the notion that timing behavior is specific to the nature of the task, and thus further weakens the idea that timing is a generalized ability that can be imposed on a variety of different types of tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号