共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of motor behavior》2013,45(6):447-453
The authors manipulated the width of a timing target in continuous circle drawing to determine whether a more stringent spatial-timing criterion would produce an increase in participants' (N = 30) temporal variability. They also examined the effect of the computational method of determining cycle duration. There was no effect of spatial precision on temporal variability in circle drawing, and tapping and circle drawing were found to use the same criterion. Those findings lend strong support to the earlier view of R. B. Ivry, R. M. Spencer, H. N. Zelaznik, and J. Diedrichsen (2002), who argued that continuous tasks such as circle drawing are timed differently from discrete-like tasks such as tapping. Therefore, the results of the present study provide support for the event and emergent timing frameworks. 相似文献
2.
Recently, researchers have discovered that individuals who are consistent timers in a tapping task are not necessarily consistent timers when they perform a continuous drawing task. In other words, nonsignificant correlations were found among tapping and drawing movements for timing precision (S. D. Robertson et al., 1999). In the present experiment, the authors investigated whether or not consistency in timing for tapping and drawing was correlated when participants (N = 24) were allowed to move at their preferred rate of movement. There were no significant correlations between tapping and drawing in terms of timing precision. That result lends further support to the notion that timing behavior is specific to the nature of the task, and thus further weakens the idea that timing is a generalized ability that can be imposed on a variety of different types of tasks. 相似文献
3.
《Journal of motor behavior》2013,45(2):128-136
The authors examined how timing accuracy in tapping sequences is influenced by sequential effects of preceding finger movements and biomechanical interdependencies among fingers. Skilled pianists tapped sequences at 3 rates; in each sequence, a finger whose motion was more or less independent of other fingers' motion was preceded by a finger to which it was more or less coupled. Less independent fingers and those preceded by a more coupled finger showed large timing errors and change in motion because of the preceding finger's motion. Motion change correlated with shorter intertap intervals and increased with rate. Thus, timing of sequence elements is not independent of the motion trajectories that individuals use to produce them. Neither motion nor its relation to timing is invariant across rates. 相似文献
4.
Recent investigations of timing in motor control have been interpreted as support for the concept of brain modularity. According to this concept, the brain is organized into functional modules that contain mechanisms responsible for general processes. Keele and colleagues (Keele & Hawkins, 1982; Keele & Ivry, 1987; Keele, Ivry, & Pokorny, 1987; Keele, Pokorny, Corcos, & Ivry, 1985) demonstrated that the within-subject variability in cycle duration of repetitive movements is correlated across finger, forearm, and foot movements, providing evidence in support of a general timing module. The present study examines the notion of timing modularity of speech and nonspeech movements of the oral motor system as well as the manual motor system. Subjects produced repetitive movements with the finger, forearm, and jaw. In addition, a fourth task involved the repetition of a syllable. All tasks were to be produced with a 400-ms cycle duration; target duration was established with a pacing tone, which then was removed. For each task, the within-subject variability of the cycle duration was computed for the unpaced movements over 20 trials. Significant correlations were found between each pair of effectors and tasks. The present results provide evidence that common timing processes are involved not only in movements of the limbs, but also in speech and nonspeech movements of oral structures. 相似文献
5.
When subjects are required to produce short sequences of equally paced finger taps and to accentuate one of the taps, the interval preceding the forceful tap is shortened and the one that immediately follows the accent is lengthened. Assuming that the tapping movements are triggered by an internal clock, one explanation attributes the mistiming of the taps to central factors: The momentary rate of the clock is accelerated or decelerated as a function of motor preparation to, respectively, increase or decrease the movement force. This hypothesis predicts that the interre-sponse intervals measured between either tap movement onsets or movement terminations (taps) will show the same timing pattern. A second explanation for the observed interval effects is that the tapping movements are triggered by a regular internal clock but the timing of the successive taps is altered because the forceful movement is completed in less time than the other tap movements are. This “peripheral” hypothesis predicts regular timing of movement onsets but distorted timing of movement terminations. In the present study, the trajectories of the movements performed by subjects were recorded and the interresponse intervals were measured at the beginning and the end of the tapping movements. The results of Experiment 1 showed that neither model can fully explain the interval effects: The fast forceful movements were initiated with an additional delay that took into account the small execution time of these movements. Experiment 2 reproduced this finding and showed that the timing of the onset and contact intervals did not evolve with the repetition of trial blocks. Therefore, the assumption of an internal clock that would trigger the successive movements must be rejected. The results are discussed in the framework of a modified two-stage model in which the internal clock, instead of triggering the tapping movements, provides target time points at which the movements have to produce their meaningful effects, that is, contacts with the response key. The timing distortions are likely to reflect both peripheral and central components. 相似文献
6.
Accurate timing of limb displacement is crucial for effective motor control. The authors examined the effects of movement velocity, duration, direction, added mass, and auditory cueing on timing, spatial, and trajectory variability of single- and multijoint rhythmic movements. During single-joint movements, increased velocity decreased timing and spatial variability, whereas increased movement duration increased timing variability but decreased spatial variability. For multijoint movements, regardless of condition, increasing velocity decreased joint timing, spatial, and trajectory variability, but all hand variabilities were unaffected by velocity, duration, load, or direction. Timing, spatial, and trajectory variability was greater at the shoulder compared with the elbow and minimal at the hand, supporting the notion that reaching movements are planned in hand space as opposed to joint space. 相似文献
7.
《Journal of motor behavior》2013,45(5):391-399
The authors studied whether the drawing variability in young children is best explicable by (a) demands on the explicit timing system, (b) an underdeveloped ability to control limb dynamics, or (c) both. The explicit timing demands were lower in continuous drawing in comparison with the discontinuous task. The authors manipulated limb dynamics by changing the number of joints involved, with line drawing requiring fewer joints than circle drawing. Results showed that young children had high temporal variability in discontinuous circling but not in other conditions. The authors argue that both explicit timing and dynamic complexity of limb control may be determinants of temporal consistency and may thus play an important role in the development of drawing and writing skills in children. 相似文献
8.
Herbert Heuer 《Journal of motor behavior》2013,45(2):130-142
In rapid finger tapping, occasional intertap intervals of about twice the normal length or even longer, called blockings, can be observed. Skilled rapid tapping requires that flexor and extensor activity be timed so that they coincide with certain phases of the finger movement. In the present study, the hypothesis examined was that blockings are associated with a deviation from the proper timing relations between the more proximal signals (electromyographic [EMG] bursts) and the more distal signal (position-time curve of the finger). Participants (N = 8) performed up-and-down tapping. Blockings were compared with the preceding normal tapping cycles; a temporal forward shift of the flexor burst in the time interval between two kinematic landmarks—the lifting of the finger and the reversal of the movement—was found consistently in the blockings The phase shift of the flexor burst relative to the kinematic landmarks did not develop gradually in the course of the tapping cycles that preceded the blocking but was an abrupt deviation, which suggests that blockings occur with an increased likelihood as the extremes of the normal variability of the phase relation are approached. 相似文献
9.
10.
John F. Catalano 《Journal of motor behavior》2013,45(1):63-67
Theories of the rest-related phenomena of reminiscence and warm-up decrement regard them as independent, being due to different factors. In this study it was found that rest following massed practice of a continuous task increased performance (reminiscence) and rest following massed practice of a discrete task lowered performance (warm-up decrement). The near-zero correlation found between the phenomena indicates that they are indeed independent and task-specific. Implications of the findings for the prediction of the effect of rest, and the fact that much motor learning and performance is task-specific, is discussed. 相似文献
11.
Charles H. Shea Gabriele Wulf Jin-Hoon Park Briana Gaunt 《Journal of motor behavior》2013,45(2):127-138
The effects of an auditory model on the learning of relative and absolute timing were examined. In 2 experiments, participants attempted to learn to produce a 1,000- or 1,600-ms sequence of 5 key presses with a specific relative-timing pattern. In each experiment, participants were, or were not, provided an auditory model that consisted of a series of tones that were temporally spaced according to the criterion relative-timing pattern. In Experiment 1, participants (n = 14) given the auditory template exhibited better relative- and absolute-timing performance than participants (n = 14) not given the auditory template. In Experiment 2, auditory and no-auditory template groups again were tested, but in that experiment each physical practice participant (n = 16) was paired during acquisition with an observer (n = 16). The observer was privy to all instructions as well as auditory and visual information that was provided the physical practice participant. The results replicated the results of Experiment 1: Relative-timing information was enhanced by the auditory template for both the physical and observation practice participants. Absolute timing was improved only when the auditory model was coupled with physical practice. Consistent with the proposal of D. M. Scully and K. M. Newell (1985), modeled timing information in physical and observational practice benefited the learning of the relative-timing features of the task, but physical practice was required to enhance absolute timing. 相似文献
12.
Megan A. Pope 《Journal of motor behavior》2019,51(1):113-120
Although, event and emergent timings are thought of as mutually exclusive, significant correlations between tapping and circle drawing (Baer, Thibodeau, Gralnick, Li, &; Penhune, 2013; Studenka, Zelaznik, &; Balasubramaniam, 2012; Zelaznik &; Rosenbaum, 2010) suggest that emergent timing may not be as robust as once thought. We aimed to test this hypothesis in both a younger (18–25) and older (55–100) population. Participants performed one block of circle drawing as a baseline, then six blocks of tapping, followed by circle drawing. We examined the use of event timing. Our hypothesis that acute experience with event timing would bias an individual to use event timing during an emergent task was not supported. We, instead, support the robustness of event and emergent timing as independent timing modes. 相似文献
13.
Charles H. Shea Qin Lai David L. Wright Maarten Immink Charles Black 《Journal of motor behavior》2013,45(2):139-152
The authors conducted the present experiments to resolve the discrepancy between studies in which relative-timing learning has been found to be enhanced by consistent practice conditions and contextual interference experiments in which relative-timing learning has been found to be enhanced more by random practice than by blocked practice. There were 40 participants in Experiment 1 and 48 in Experiment 2. The results of Experiment 1 extended previous findings: The learning of the relative-timing pattern was systematically enhanced by the degree to which the practice conditions promoted movement consistency (constant > blocked > serial > random). Experiment 2 provided evidence that the discrepancy between the relative-timing effects in the 2 groups of studies was a product of the way in which relative-timing goals and feedback were presented. When the feedback was presented as segment times, random practice resulted in generally more stable relative-timing patterns during acquisition than blocked practice did. Thus, in both experiments, the learning of the relative-timing pattern was enhanced by more stable relative-timing conditions during acquisition. Absolute-timing learning, as indexed by the transfer tests, was enhanced by serial or random practice as compared with constant or blocked practice, and was relatively unaffected by feedback conditions directed at the relative-timing pattern. In terms of motor programming theory, those findings are taken as additional evidence for the disassociation of memories supporting generalized motor program (GMP) performance, as indexed by relative timing, and parameter performance, as indexed by absolute timing. 相似文献
14.
Mary M. Smyth 《Journal of motor behavior》2013,45(3):185-190
Visual guidance and movement to a stop were used to train subjects to make a simple movement without experiencing error in practice. Movement to a stop led to test performance as accurate as that after training with KR, but visual guidance did not. If a continuous visual cue as well as a stop were present during practice, subjects also performed less accurately, although they did not need to attend to the visual cue. All types of training were better than no training at all. Results are discussed in terms of the role of visual feedback in the development and assessment of programs for movement. 相似文献
15.
The purpose of the present experiment was to examine further earlier suggestions that a reduced relative frequency of knowledge of results (KR) can enhance the learning of generalized motor programs (GMPs) but at the same time degrade parameter learning, compared with giving KR after every trial (Wulf & Schmidt, 1989; Wulf, Schmidt, & Deubel, 1993). In contrast to these earlier studies, here KR was given separately for relative timing and absolute timing. Subjects practiced three movement patterns that required the same relative timing but different absolute movement times. KR was provided on 100% or 50% of the practice trials for relative timing or absolute timing, respectively. In retention and transfer tests, the groups that had had 50% KR about relative timing demonstrated more effective learning of the relative-timing structure, that is, GMP learning, than the groups that had had 100% KR about relative timing. The KR frequency had no effect on parameterization during retention; yet, when transfer to a task with a novel overall duration was required, the groups given 100% KR about absolute timing were more accurate in parameterization than the groups provided with 50% KR about absolute timing. Thus, the reduced relative KR frequency enhanced GMP learning but had no beneficial effect, or even a degrading effect, on parameter learning. The differential effects of a reduced KR frequency on the learning of relative timing and absolute timing also provide additional support for the dissociation of GMP and parameterization processes. 相似文献
16.
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors’ purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions. 相似文献
17.
《Journal of motor behavior》2013,45(1):104-114
In performing the sit-to-stand transition, young children (6- to 7-year-olds) were expected to display a movement form similar to that of adults. However, movement consistency was predicted to be poorer in children than in adults because they lack refinement of motor control processes. Kinematic analysis of 10 repetitions of the sit-to-stand movement was carried out for 6 typically developing children and 6 adults. Supporting the authors' prediction of comparable form, no differences were evident between age groups for sequence of joint onsets, proportional duration of segmental motion, or in angle-angle plots of displacement at 2 segments. In contrast, within-participant variability was found to be higher for children: Coefficients of variation for most kinematic measures were twice those seen for adults. The authors interpret the children's lack of movement consistency as a reflection of inadequate stabilization of an internal model of intersegmental dynamics. Whereas adults have attained a skill level associated with refinement of that model, children have not. Children have an additional control problem because changes in body morphology throughout childhood require ongoing updating of the internal model that controls intrinsic dynamics. 相似文献
18.
《Journal of motor behavior》2012,44(1):89-96
AbstractThese hypotheses were tested: (1) Freely chosen frequency in unilateral index finger tapping is correlated between the two index fingers, and (2) A 3-min bout of unilateral index finger tapping followed by 10?min rest results in an increase of the freely chosen tapping frequency performed by the contralateral index finger in a second bout. Thirty-two adults participated. Freely chosen tapping frequencies from first bouts were 167.2?±?79.0 and 161.5?±?69.4 taps/min for the dominant and non-dominant hand, respectively (p=.434). These variables correlated (R=.86, p<.001). When bout one and two were performed with the dominant and non-dominant hand, respectively, the frequency increased by 8.1%±17.2% in bout two (p=.011). In opposite order, the frequency increased by 14.1%±17.5% (p<.001), which was not different from the ~8% (p=.157). 相似文献
19.
《Journal of motor behavior》2013,45(6):545-557
Haptic guidance can improve the immediate performance of a motor task by enforcing a desired pattern of kinematics, but several studies have found that it impairs motor learning. In this study, we studied whether guidance from a robotic steering wheel can improve one's short-term learning of steering a simulated vehicle. We developed a computer algorithm that adapted the firmness of the guidance based on ongoing error. Training with "guidance-as-needed" or "fixed guidance" allowed participants to learn to steer without experiencing large errors and produced slightly better immediate retention than did training without guidance, apparently because participants were better able to learn when to initiate turns. Training with guidance-as-needed produced slightly better results than training with fixed guidance: the guidance-as-needed participants' errors were significantly smaller when guidance was removed. However, this difference quickly dissipated with more practice. We conclude that haptic guidance can benefit short-term learning of a steering-type task while also limiting performance errors during training. 相似文献
20.
为了探讨跨通道情境下同一种刺激序列中双任务范式与计时中断范式中位置效应和间断效应的异同,研究设计了实验1和实验2。实验1以2500 ms和4500 ms为目标时距,采用相同的刺激序列(视觉呈现时距信号,听觉呈现干扰信号或中断信号),要求3组被试分别在控制、干扰及中断条件下完成相应任务,结果发现不管2500 ms或4500 ms时,中断条件较干扰条件和控制条件的间断效应更明显;同时发现在2500 ms时,不管控制、干扰还是中断条件下均发现了位置效应,而4500 ms时仅在中断条件下出现了位置效应,这可能由于实验1的控制及干扰任务中的4500 ms时的“晚”位置的时间确定性较高,以致掩盖了位置效应。为了降低“晚”位置出现的确定性,更好地对比两种范式中的效应,实验2将目标时距设置为1500 ms和2500 ms,结果发现在1500 ms或2500 ms时,不管控制、干扰还是中断条件下均发现了位置效应,且中断条件较干扰条件和控制条件下间断效应更明显。上述结果意味着跨通道情境下同一种刺激序列中双任务范式与计时中断范式中位置效应是否相同局限在一定时间范畴;计时中断范式中的中断效应对计时的消弱较双任务范式干扰效应更显著。 相似文献