首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of movement time and time to visual feedback (feedback time) on prism exposure aftereffects and direct effects were studied. In Experiment 1, the participants' (N = 60) pointing limb became visible early in the movement (.2-s feedback time), and eye-head aftereffects increased with increasing movement time (.5 to 3.0 s), but larger hand-head aftereffects showed little change. Direct effects (terminal error during exposure) showed near-perfect compensation for the prismatic displacement (11.4 diopters) when movement time was short but decreasing compensation with longer movement times. In Experiment 2, participants' (N = 48) eye-head aftereffects increased and their larger hand-head aftereffects decreased with increasing movement time (2.0 and 3.0 s), especially when feedback time increased (.25 and 1.5 s). Direct effects showed increasing overcompensation for longer movement and feedback times. Those results suggest that aftereffects and direct effects measure distinct adaptive processes, namely, spatial realignment and strategic control, respectively. Differences in movement and feedback times evoke different eye-hand coordination strategies and consequent direct effects. Realignment aftereffects also depend upon the coordination strategy deployed, but not all strategies support realignment. Moreover, realignment is transparent to strategic control and, when added to strategic correction, may produce nonadaptive performance.  相似文献   

2.
Under spatial misalignment of eye and hand induced by laterally displacing prisms (11.4 degrees in the rightward direction), subjects pointed 60 times (once every 3 s) at a visually implicit target (straight ahead of nose, Experiment 1) or a visually explicit target (an objectively straight-ahead target, Experiment 2). For different groups in each experiment, the hand became visible early in the sagittal pointing movement (early visual feedback). Adaptation to the optical misalignment during exposure (direct effects) was rapid, especially with early feedback; complete compensation for the misalignment was achieved within about 30 trials, and overcompensation occurred in later trials, especially with an explicit target. In contrast, adaptation measured with the misalignment removed and without visual feedback after blocks of 10 pointing trials (aftereffects) was slow to develop, especially with delayed feedback and an implicit target; at most, about 40% compensation for the misalignment occurred after 60 trials. This difference between direct effects and aftereffects is discussed in terms of separable adaptive mechanisms that are activated by different error signals. Adaptive coordination is activated by error feedback and involves centrally located, strategically flexible, short-latency processes to correct for sudden changes in operational precision that normally occur with short-term changes in coordination tasks. Adaptive alignment is activated automatically by spatial discordance between misaligned systems and involves distributed, long-latency processes to correct for slowly developing shifts in alignment among perceptual-motor components that normally occur with long-term drift. The sudden onset of misalignment in experimental situations activates both mechanisms in a complex and not always cooperative manner, which may produce overcompensatory behavior during exposure (i.e., direct effects) and which may limit long-term alignment (i.e., aftereffects).  相似文献   

3.
Subjects wore goggles with prisms that laterally displaced the visual field (rightward by 11.4 degree) and with full view of the limb engaged in paced (2-s rate) sagittal pointing at either an implicit ("straight ahead of the nose") target (Experiment 1) or an explicit (positioned leftward by 11.4 degree) target (in Experiment 2). In experimental conditions, subjects performed a secondary cognitive task (mental arithmetic) simultaneously during target pointing. In control conditions, no cognitive load was imposed. Aftereffect measures of adaptation to the prismatic displacement were not substantially different when problem solving was required, but terminal error of the exposure pointing task was reliably affected by cognitive load. These results are consistent with the hypothesis of separable mechanisms for adaptive coordination and adaptive alignment. Adaptive coordination may be mediated by strategically flexible coordinative linkage between sensory motor systems (eye-head and hand-head), but spatial alignment seems to be mediated by adaptive encoders within coordinatively linked subsystems. If the coordination task involves predominately automatic processing, coordinative linkage can be frequent enough under cognitive load for substantial realignment to occur even though exposure performance (adaptive coordination) may be less than optimal.  相似文献   

4.
Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial discordance signals noncorrespondence between spatial maps. In Experiment 1, generalization of recalibration aftereffects from prism exposure to postexposure depended upon the similarity of target pointing limb postures. Realignment aftereffects generalized to the spatial maps involved in exposure. In Experiment 2, the 2 kinds of aftereffects were measured for 3 test positions, one of which was the exposure training position. Recalibration aftereffects generalized nonlinearly, while realignment aftereffects generalized linearly, replicating Bedford (1989, 1993a) using a more familiar prism adaptation paradigm. Recalibration and realignment require methods for distinguishing their relative contribution to prism adaptation.  相似文献   

5.
While looking through laterally displacing prisms, subjects pointed 60 times straight ahead of their nose at a rate of one complete movement every 2 or 3 s, with visual feedback available early in the pointing movement or delayed until the end of the movement. Sagittal pointing was paced such that movement speed covaried with pointing rate. Aftereffect measures (obtained after every 10 pointing trials) showed that when the limb became visible early in a pointing movement, proprioceptive adaptation was greater than visual, but when visual feedback was delayed until the end of the movement, the reverse was true. This effect occurred only with the 3-s pointing rate, however. With the 2-s pointing rate, adaptation was predominately proprioceptive in nature, regardless of feedback availability. Independent of the availability of visual feedback, visual adaptation developed more quickly with 3-s pointing, whereas proprioceptive adaptation developed more rapidly with 2-s pointing. These results are discussed in terms of a model of perceptual-motor organization in which the direction of coordinative (guidance) linkage between eye-head (visual) and hand-head (proprioceptive) systems (and consequently the locus of discordance registration and adaptive recalibration) is determined jointly by pointing rate and feedback availability. An additional effect of pointing rate is to determine the rate of discordant inputs. Maximal adaptive recalibration occurs when the input (pointing) rate matches the time constant of the adaptive encoder in the guided system.  相似文献   

6.
Two types of adaptive processes involved in prism adaptation have been identified&colon: Slower spatial realignment among the several unique sensorimotor coordinate systems (spatial maps) and faster strategic motor control responses(including skill learning and calibration) to spatial misalignment. One measures the 1st process by assessing the aftereffects of prism exposure, whereas direct effects of the prism during exposure are a measure of the 2nd process. A model is described that relates those adaptive processes and distinguishes between extraordinary alignment and ordinary calibration. A conformal translation algorithm that operates on the hypothesized circuitry is proposed. The authors apply to the model to explain the advantage of visual calibration when the limb is seen in the starting position prior to movement initiation. Implications of the model for the use of prism adaptation as a tool for investigation of motor control and learning are discussed.  相似文献   

7.
In 2 experiments, the authors manipulated the frequency of concurrent feedback to discern the effects on learning. In each experiment, participants (N = 48, Experiment 1; N = 36, Experiment 2) attempted to reproduce a criterion force-production waveform (5 s in duration) presented on the computer monitor. Consistent with the guidance hypothesis, the results of Experiment 1 indicated very strong guiding effects of concurrent feedback and strong dependence on the feedback, as indicated by participants' extremely poor performance upon feedback withdrawal in retention. As predicted by the guidance hypothesis, dependence on the feedback was reduced as a result of reducing the frequency of the concurrent feedback. The results of Experiment 2 indicated that one can enhance learning by providing concurrent and terminal feedback on 1 trial, with no feedback on the subsequent trial. In that way, the strong guiding effects of concurrent feedback could be realized and the beneficial effects of terminal feedback could also be achieved.  相似文献   

8.
Two types of adaptive processes involved in prism adaptation have been identified: slower spatial realignment among the several unique sensorimotor coordinate systems (spatial maps) and faster strategic motor control responses (including skill learning and calibration) to spatial misalignment. One measures the 1st process by assessing the aftereffects of prism exposure, whereas direct effects of the prism during exposure are a measure of the 2nd process. A model is described that relates those adaptive processes and distinguishes between extraordinary alignment and ordinary calibration. A conformal translation algorithm that operates on the hypothesized circuitry is proposed. The authors apply the model to explain the advantage of visual calibration when the limb is seen in the starting position prior to movement initiation. Implications of the model for the use of prism adaptation as a tool for investigation of motor control and learning are discussed.  相似文献   

9.
The performance of subjects whose starting limb location was visible when pointing to a sagittal target during exposure to prismatic displacement showed immediate target acquisition, but aftereffects of exposure were absent. When starting limb location was not visible, accurate exposure performance was slow to develop, but aftereffects were substantial. Visible starting location evoked a zeroing-in control strategy on the basis of relative-location coding, which rapidly reduced performance error but disabled detection of spatial misalignment between sensorimotor systems. When starting location was not visible, absolute-location coding of the displaced target initiated movement that had to be corrected subsequently by visual feedback. In this case, comparison of the initial erroneous movement code with the limb location that achieved the target enabled misalignment detection and consequent realignment.  相似文献   

10.
Five experiments are reported in which the effect of partial visual feedback on the accuracy of discrete target aiming was investigated. Visual feedback was manipulated through a spectacle-mounted liquid-crystal tachistoscope. The length of the visual feedback interval was varied as a percentage of the instructed movement time. In Experiment 1, the length of the vision interval was manipulated symmetrically at the beginning- and end-phase of the movement, whereas in the remaining experiments, the vision time was varied with respect to the end-phase only. The variations at the end were examined for different distances (Experiment 2), different movement speeds at the same distance (Experiment 3), and in small interstep intervals (Experiment 4). A vision time of more than 150 ms at the end-phase of the movement enhanced aiming performance in all experiments. Longer vision times monotonously improved aiming accuracy; the fifth experiment showed that a vision time of about 275 ms was sufficient for near-perfect aiming. Furthermore, the significance of vision during the first phase of a movement was demonstrated again. The results of the five experiments pointed to shorter visuomotor processing times. To explain the beneficial effects of short vision times for aiming accuracy, we propose a model of visuomotor processing that is based on the stochastic optimized submovement model of Meyer, Abrams, Kornblum, Wright, and Smith (1988).  相似文献   

11.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than that expected from the optical displacement magnitude. Such 1st trial adaptation was confirmed in 2 experiments (N = 48 students in each) comparing pointing toward optically displaced targets and toward equivalent physically displaced targets (no optical displacement), with visual feedback delayed until movement completion. First-trial performance could not be explained by ordinary target undershoot, online correction, or reverse optic flow information about true target position and was unrelated to realignment aftereffects. Such adaptation might be an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt head rotation opposite to the direction of the displacement, thereby reducing the effective optical displacement.  相似文献   

12.
In 3 experiments, the author tested the hypothesis that coordination dynamics is the content of a generalized motor program (GMP) for rhythmic interlimb coordination. In Experiment 1, learners (N = 14) practiced a ?90° movement with either identically timed or differently timed limbs. Both acquisition and transfer to novel (effector and pattern) timings were unaffected by the learning condition and were suggestive of the intrinsic dynamics for in-phase and antiphase. In Experiment 2, learners' (N = 13) acquisition of 2 different phase relations (?90° and ?45°) was qualitatively identical. Attractor reconstruction revealed an increase in the predictability of individual movement trajectories and a decrease in attractor dimensionality over learning. Transfer for both ?90° and ?45° was again suggestive of the intrinsic dynamics. In Experiment 3, learning altered participants' (N = 8) performance of in-phase and antiphase relations. Together, the results suggested a single continuum of phase relations, called an attractor landscape, that produces similar patterns of CE and VE for both previously stable and learned coordinations.  相似文献   

13.
It is often discussed that moral judgments are either consistent with the principle of utilitarianism or with the principle of deontology. Utilitarianism is a moral principle stating that the right act is the one that produces the best overall outcome. Deontology represents an ethical position indicating that the morality of an action depends on the intrinsic nature of the action regardless of the consequences. Criticism on the structure of moral dilemmas includes the problem that these dilemmas confound norms and consequences. Recently, a multinomial model (the CNI model) was developed to disentangle and measure sensitivity to consequences (C), sensitivity to moral norms (N), and general preference for inaction versus action (I), respectively. In Experiment 1, we examined the influence of time pressure on moral judgments using the CNI model. We found that time pressure influenced moral dilemma judgments by decreasing participants' sensitivity for consequences. There were no significant effects of time pressure on participants' sensitivity to norms and general preference for inaction. Furthermore, in Experiment 2, we examined the link of reaction times to moral judgments more closely by fitting a hierarchical Bayesian version of the CNI model. Longer reaction times lead to an increase in parameter N, and there was no influence of reaction times on parameter C or I.  相似文献   

14.
Aftereffect measures of visual shift and proprioceptive shift were obtained for prism exposure conditions in which, at the end of a sagittal pointing movement, most of the arm was visible (concurrent exposure) or only the first finger joint was visible (terminal exposure). Intermediate exposure conditions permitted view of the hand or the first two finger joints. Under the concurrent exposure condition, proprioceptive shift was greater than visual shift but, as view of the pointing hand decreased, the relative magnitude of the two components gradually reversed so that, under the terminal exposure condition, visual shift was greater than proprioceptive shift. These results are discussed in terms of a model of perceptual-motor organization (Redding, Clark, & Wallace, 1985) in which the direction of coordinative linkage between eye-head and hand-head systems determines the locus of discordance and adaptive recalibration.  相似文献   

15.
We present data from eight experiments in which we explored the effects of source confusion on the hindsight bias; participants' success in disregarding information when they were instructed to do so was affected by participants' level of source confusion. In Experiment 1 we demonstrated participants' failure to disregard Revolutionary War information they recently learned while reading an essay; this failure to discount was not affected by participants' essay reading times (Experiment 1a). In Experiment 2 participants successfully discounted obscure War of 1812 information; this discounted information remained available in memory (Experiment 2a). In a direct test of source confusion (Experiment 3) we showed that participants discriminated between presented and not‐presented War of 1812 information better than they discriminated presented and not‐presented Revolutionary War information. In Experiments 4 and 4a we tested and rejected a motivational explanation for our findings, namely that subjects voluntarily withheld information when asked to disregard it. We tested a debiasing technique in Experiment 5 and found it was successful in helping participants discount familiar information. Results throughout are discussed as being attributable to source confusion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The open-loop model by Wing and Kristofferson has successfully explained many aspects of movement timing. A later adaptation of the model assumes that timing processes do not control the movements themselves, but the sensory consequences of the movements. The present study tested direct predictions from this “sensory-goals model”. In two experiments, participants were instructed to produce regular intervals by tapping alternately with the index fingers of the left and the right hand. Auditory feedback tones from the taps of one hand were delayed. As a consequence, regular intervals between taps resulted in irregular intervals between feedback tones. Participants compensated for this auditory irregularity by changing their movement timing. Compensation effects increased with the magnitude of feedback delay (Experiment 1) and were also observed in a unimanual variant of the task (Experiment 2). The pattern of effects in alternating tapping suggests that compensation processes were anticipatory—that is, compensate for upcoming feedback delay rather than being reactions to delay. All experiments confirmed formal model predictions. Taken together, the findings corroborate the sensory-goals adaptation of the Wing–Kristofferson model.  相似文献   

17.
Aftereffect measures of visual shift and proprioceptive shift were obtained for prism exposure conditions in which, at the end of a sagittal pointing movement, most of the arm was visible (concurrent exposure) or only the first finger joint was visible (terminal exposure). Intermediate exposure conditions permitted view of the hand or the first two finger joints. Under the concurrent exposure condition, proprioceptive shift was greater than visual shift but, as view of the pointing hand decreased, the relative magnitude of the two components gradually reversed so that, under the terminal exposure condition, visual shift was greater than proprioceptive shift. These results are discussed in terms of a model of perceptual-motor organization (Redding, Clark, & Wallace, 1985) in which the direction of coordinative linkage between eye-head and hand-head systems determines the locus of discordance and adaptive recalibration.  相似文献   

18.
Visual adaptation is known to bias perception away from the properties of the adapting stimuli, toward opposite properties, resulting in perceptual aftereffects. For example, prolonged exposure to a face has been shown to produce an identity aftereffect, biasing perception of a subsequent face toward the opposite identity. Such repulsive aftereffects have been observed for both visually perceived and visually imagined faces, suggesting that both perception and imagery yield typical aftereffects. However, recent studies have reported opposite patterns of aftereffects for perception and imagery of face gender. In these studies, visually perceived faces produced typical effects in which perception of androgynous faces was biased away from the gender of the adaptor, whereas imagery of the same stimuli produced atypical aftereffects, biasing the perceived gender of androgynous faces toward the gender of the adaptor. These findings are highly unusual and warrant further research. The present study aimed to gather new evidence on the direction of gender aftereffects following perception and imagery of faces. Experiment 1 had participants view and imagine female and male faces of famous and non-famous individuals. To determine the effect of concomitant visual stimulation on imagery and adaptation, participants visualized faces both in the presence and in the absence of a visual input. In Experiment 2, participants were adapted to perceived and imagined faces of famous and non-famous actors matched on gender typicality. This manipulation allowed us to determine the effect of face familiarity on the magnitude of gender aftereffects. Contrary to evidence from previous studies, our results demonstrated that both perception and imagery produced typical aftereffects, biasing the perceived gender of androgynous faces in the opposite direction to the gender of the adaptor. Famous faces yielded largest adaptation effects across tasks. Experiment 2 confirmed that these effects depended on familiarity rather than on sexual dimorphism. In both experiments, this effect was greater for perception than imagery. Additionally, imagery of famous faces produced strongest aftereffects when it was performed in the absence of visual stimulation. The implications of these findings are discussed.  相似文献   

19.
In 2 prism adaptation experiments, the authors investigated the effects of limb starting position visibility (visible or not visible) and visual feedback availability (early or late in target pointing movements). Thirty-two students participated in Experiment 1 and 24 students participated in Experiment 2. Independent of visual feedback availability, constant error was larger and variable error was smaller for target pointing when limb starting position was visible during prism exposure. Independent of limb starting position visibility, aftereffects of prism exposure were determined by visual feedback availability. Those results support the hypothesis that calibration is determined by limb starting position visibility, whereas alignment is determined separately by visual feedback availability.  相似文献   

20.
Three eye movement experiments investigated focus identification during sentence comprehension. Participants read dative or double-object sentences (i.e., either the direct or indirect object occurred first), and a replacive continuation supplied a contrast that was congruous with either the direct or the indirect object. Experiments 1 and 2 manipulated focus by locating only adjacent to either the direct or indirect object of dative (Experiment 1) or double-object (Experiment 2) sentences. Reading-time effects indicated that the surface position of the focus particle influenced processing. In addition, Experiment 1 reading times were longer when the replacive was incongruous with the constituent that only adjoined, and particle position modulated a similar effect in Experiment 2. Experiment 3 showed that this effect was absent when only was omitted. We conclude that the surface position of a focus particle modulates focus identification during on-line sentence comprehension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号