首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two experiments, we investigated the effects of duration of visual feedback of the pointing limb and the time (early to late) in the movement when the limb first becomes visible (timing of visual feedback). Timing, rather than duration of visual feedback, proved to have the greater effect on the relative magnitude of visual and proprioceptive adaptation. Visual adaptation increased smoothly with feedback delay, but corresponding decreases in proprioceptive adaptation underwent an additional sharp change when feedback was delayed until about three-fourths of the way to the terminal limb position. These results are consistent with the idea that visual and proprioceptive adaptation are mediated by exclusive processes. Change in the limb position sense (i.e., proprioceptive adaptation) may be produced by visual guidance of the pointing limb, and view of the limb early in the pointing movement seems to be critical for such visual guidance. The limb may be ballistically released as it nears the terminal position, and, thereafter, any opportunity for visual guidance (i.e., view of the limb) is not effective. On the other hand, change in the eye position sense (i.e., visual adaptation) may be mediated by proprioceptive guidance of the eye; the eyes may track the imaged position of the nonvisible limb. Such proprioceptive guidance seems to be solely a function of the distance moved before the limb becomes visible.  相似文献   

2.
While looking through laterally displacing prisms, subjects pointed sagittally 80 times at an objectively straight-ahead target, completing a reciprocal out-and-back pointing movement ever 1, 3, or 6 s. Visual feedback was available early in the pointing movement or only late at the end of the movement. Aftereffect measures of adaptive shift (obtained after every 10 pointing trials) showed adaptive change only in limb position sense (i.e., proprioceptive adaptation) when movement duration was 1 s, regardless of visual feedback condition; but as movement duration increased, adaptive change in the eye position sense (i.e., visual adaptation) increased while proprioceptive adaptation decreased, especially for the late visual feedback condition. Regardless of visual feedback condition, proprioceptive adaptation showed the maximal rate of growth with the 1-s movement duration, whereas visual adaptation showed maximal growth with the 6-s movement duration. These results provide additional support for a model of adaptive spatial mapping in which the direction of strategically flexible coordination (guidance) between eye and limb (and consequently the locus of adaptive spatial mapping) is jointly determined by movement duration and timing of visual feedback. An additional effect of movement duration is to determine the rate of discordant inputs. Maximal growth of adaptation occurs when the input rate matches the response time of the spatial mapping function.  相似文献   

3.
While looking through laterally displacing prisms, subjects pointed sagittally 80 times at an objectively straight-ahead target, completing a reciprocal out-and-back pointing movement every 1, 3, or 6 s. Visual feedback was available early in the pointing movement or only late at the end of movement. Aftereffect measures of adaptive shift (obtained after every 10 pointing trials) showed adaptive change only in limb position sense (i.e., proprioceptive adaptation) when movement duration was 1 s, regardless of visual feedback condition; but as movement duration increased, adaptive change in the eye position sense (i.e., visual adaptation) increased while proprioceptive adaptation decreased, especially for the late visual feedback condition. Regardless of visual feedback condition, proprioceptive adaptation showed the maximal rate of growth with the 1-s movement duration, whereas visual adaptation showed maximal growth with the 6-s movement duration. These results provide additional support for a model of adaptive spatial mapping in which the direction of strategically flexible coordination (guidance) between eye and limb (and consequently the locus of adaptive spatial mapping) is jointly determined by movement duration and timing of visual feedback. An additional effect of movement duration is to determine the rate of discordant inputs. Maximal growth of adaptation occurs when the input rate matches the response time of the spatial mapping function.  相似文献   

4.
While looking through laterally displacing prisms, subjects pointed 60 times straight ahead of their nose at a rate of one complete movement every 2 or 3 s, with visual feedback available early in the pointing movement or delayed until the end of the movement. Sagittal pointing was paced such that movement speed covaried with pointing rate. Aftereffect measures (obtained after every 10 pointing trials) showed that when the limb became visible early in a pointing movement, proprioceptive adaptation was greater than visual, but when visual feedback was delayed until the end of the movement, the reverse was true. This effect occurred only with the 3-s pointing rate, however. With the 2-s pointing rate, adaptation was predominately proprioceptive in nature, regardless of feedback availability. Independent of the availability of visual feedback, visual adaptation developed more quickly with 3-s pointing, whereas proprioceptive adaptation developed more rapidly with 2-s pointing. These results are discussed in terms of a model of perceptual-motor organization in which the direction of coordinative (guidance) linkage between eye-head (visual) and hand-head (proprioceptive) systems (and consequently the locus of discordance registration and adaptive recalibration) is determined jointly by pointing rate and feedback availability. An additional effect of pointing rate is to determine the rate of discordant inputs. Maximal adaptive recalibration occurs when the input (pointing) rate matches the time constant of the adaptive encoder in the guided system.  相似文献   

5.
Orienting to a target by looking and pointing is examined for parallels between the control of the two systems and interactions due to movement of the eyes and limb to the same target. Parallels appear early in orienting and may be due to common processing of spatial information for the ocular and manual systems. The eyes and limb both have shorter response latency to central visual and peripheral auditory targets. Each movement also has shorter latency and duration when the target presentation is short enough (200 msec) that no analysis of feedback of the target position is possible during the movement. Interactions appear at many stages of information processing for movement. Latency of ocular movement is much longer when the subject also points, and the eye and limb movement latencies are highly correlated for orienting to auditory targets. Final position of eyes and limb are significantly correlated only when target duration is short (200 msec). This illustrates that sensory information obtained before the movement begins is an important, but not the only, source of input about target position. Additional information that assists orienting may be passed from one system to another, since visual information gained by looking aided pointing to lights and proprioceptive information from the pointing hand seemed to assist the eyes in looking to sounds. Thus the production of this simple set of movements may be partly described by a cascade-type process of parallel analysis of spatial information for eye and hand control, but is also, later in the movement, assisted by cross-system interaction.  相似文献   

6.
In 2 prism adaptation experiments, the authors investigated the effects of limb starting position visibility (visible or not visible) and visual feedback availability (early or late in target pointing movements). Thirty-two students participated in Experiment 1 and 24 students participated in Experiment 2. Independent of visual feedback availability, constant error was larger and variable error was smaller for target pointing when limb starting position was visible during prism exposure. Independent of limb starting position visibility, aftereffects of prism exposure were determined by visual feedback availability. Those results support the hypothesis that calibration is determined by limb starting position visibility, whereas alignment is determined separately by visual feedback availability.  相似文献   

7.
In Experiment 1, subjects exposed to a discordance between the visual and ”proprioceptive” locations of external targets were found to exhibit aftereffects when later pointing without sight of their hands at visual targets. Aftereffects occur both when the discordance is introduced in the traditional fashion by displacing the visual locations of targets and when the proprioceptive locations of targets are displaced. These observations indicate that there is nothing unique about the visual rearrangement paradigm—the crucial factor determining whether adaptation will be elicited is the presence of a discordance in the positional information being conveyed over two different sensory modalities. In a second experiment, the effectiveness of active and passive movements in eliciting adaptation was studied using an experimental paradigm in which subjects were exposed to a systematic discordance between the visual and proprioceptive locations of external targets without ever being permitted sight of their hands; a superiority of active movements was observed, just as is usually found in visual rearrangement experiments in which sight of the hand is permitted. Evidence is presented that the failure of passive movements to elicit adaptation is related to a deterioration in accuracy of position sense information during passive limb movement.  相似文献   

8.
Abstract

Reaching to targets in a virtual reality environment with misaligned visual feedback of the hand results in changes in movements (visuomotor adaptation) and sense of felt hand position (proprioceptive recalibration). We asked if proprioceptive recalibration arises even when the misalignment between visual and proprioceptive estimates of hand position is only experienced during movement. Participants performed a “shooting task” through the targets with a cursor that was rotated 30° clockwise relative to hand motion. Results revealed that, following training on the shooting task, participants adapted their reaches to all targets by approximately 16° and recalibrated their sense of felt hand position by 8°. Thus, experiencing a sensory misalignment between visual and proprioceptive estimates of hand position during movement leads to proprioceptive recalibration.  相似文献   

9.
Adaptation to prismatically displaced vision was assessed using a factorial design involving active or passive exposure movement, active or passive test movement, and target location. Tests of visual shift, ipsilateral and contralateral proprioceptive shift, and ipsilateral and contralateral target-pointing shift were made at the completion of 6, 12, 24, 48, and 96 exposure trials. During the early stages of adaptation (< 48 exposure trials), changes in ipsilateral target pointing were completely accounted for by the sum of the visual and ipsilateral proprioceptive changes. Following longer exposure durations, evidence of a third component was obtained, but only when exposure and test movements were the same (i.e., active-active and passive-passive conditions). The acquisition of such movement-specific response tendencies was interpreted as indicating that the third component represents a change in a central program or schema, which is responsible for guiding a limb to an externally specified location. Target location had no effect on the presence or magnitude of the third component, and there was no indication that the third component transferred intermanually.  相似文献   

10.
Aftereffect measures of visual shift and proprioceptive shift were obtained for prism exposure conditions in which, at the end of a sagittal pointing movement, most of the arm was visible (concurrent exposure) or only the first finger joint was visible (terminal exposure). Intermediate exposure conditions permitted view of the hand or the first two finger joints. Under the concurrent exposure condition, proprioceptive shift was greater than visual shift but, as view of the pointing hand decreased, the relative magnitude of the two components gradually reversed so that, under the terminal exposure condition, visual shift was greater than proprioceptive shift. These results are discussed in terms of a model of perceptual-motor organization (Redding, Clark, & Wallace, 1985) in which the direction of coordinative linkage between eye-head and hand-head systems determines the locus of discordance and adaptive recalibration.  相似文献   

11.
Under spatial misalignment of eye and hand induced by laterally displacing prisms (11.4 degrees in the rightward direction), subjects pointed 60 times (once every 3 s) at a visually implicit target (straight ahead of nose, Experiment 1) or a visually explicit target (an objectively straight-ahead target, Experiment 2). For different groups in each experiment, the hand became visible early in the sagittal pointing movement (early visual feedback). Adaptation to the optical misalignment during exposure (direct effects) was rapid, especially with early feedback; complete compensation for the misalignment was achieved within about 30 trials, and overcompensation occurred in later trials, especially with an explicit target. In contrast, adaptation measured with the misalignment removed and without visual feedback after blocks of 10 pointing trials (aftereffects) was slow to develop, especially with delayed feedback and an implicit target; at most, about 40% compensation for the misalignment occurred after 60 trials. This difference between direct effects and aftereffects is discussed in terms of separable adaptive mechanisms that are activated by different error signals. Adaptive coordination is activated by error feedback and involves centrally located, strategically flexible, short-latency processes to correct for sudden changes in operational precision that normally occur with short-term changes in coordination tasks. Adaptive alignment is activated automatically by spatial discordance between misaligned systems and involves distributed, long-latency processes to correct for slowly developing shifts in alignment among perceptual-motor components that normally occur with long-term drift. The sudden onset of misalignment in experimental situations activates both mechanisms in a complex and not always cooperative manner, which may produce overcompensatory behavior during exposure (i.e., direct effects) and which may limit long-term alignment (i.e., aftereffects).  相似文献   

12.
Aftereffect measures of visual shift and proprioceptive shift were obtained for prism exposure conditions in which, at the end of a sagittal pointing movement, most of the arm was visible (concurrent exposure) or only the first finger joint was visible (terminal exposure). Intermediate exposure conditions permitted view of the hand or the first two finger joints. Under the concurrent exposure condition, proprioceptive shift was greater than visual shift but, as view of the pointing hand decreased, the relative magnitude of the two components gradually reversed so that, under the terminal exposure condition, visual shift was greater than proprioceptive shift. These results are discussed in terms of a model of perceptual-motor organization (Redding, Clark, & Wallace, 1985) in which the direction of coordinative linkage between eye-head and hand-head systems determines the locus of discordance and adaptive recalibration.  相似文献   

13.
The relative contributions of proprioceptive and efferent information in eliciting adaptation to visual rearrangement were studied under two conditions of visual stimulation. Subjects permitted sight of their forearm under normal room illumination showed significant adaptation when the forearm was (a) moved up and down under the action of tonic vibration reflexes, (b) voluntarily moved through the same trajectory at the same pace, (c) viewed while still, and (d) viewed while the margins of the elbow were vibrated. The reflex movement condition elicited significantly greater adaptation than the other conditions. Subjects allowed only sight of a point source of light attached to their hand showed significant adaptation when the forearm was (a) reflexly moved, (b) voluntarily moved through the same trajectory at the same rate, (c) passively moved, (d) still, and (e) vibrated while still. Less adaptation occurred as the amount of proprioceptive information about limb position was decreased. The adaptation elicited by voluntary movements of the forearm and by reflex movements did not differ significantly. It is concluded that corollary-discharge signals may not be crucial in adaptation to visual rearrangement; a more important factor appears to be discordance between proprioceptive and visual information.  相似文献   

14.
Level of adaptation was assessed in both exposed and unexposed eye and/or hand for visual shift (VS), proprioceptive shift (PS), and the eye-hand coordination, negative after effect (NA) measure of both visual and proprioceptive change, following 15-min and 20-diopter base-right displacement viewing of the active hand, under conditions of unconstrained head movement and terminal exposure feedback. Transfer was complete for the VS test, and significant, but incomplete for the PS and NA tests. For both exposed and unexposed eye/hand situations, level of adaptation was greater for the NA than for the PS test, which in turn showed greater adaptation than the VS test. Additivity was virtually perfect for the unexposed eye/hand (VS+PS = NA), but underadditivity appeared for the exposed eye/hand (VS+PS < NA). This underadditivity was approximately equal in magnitude to the amount that transfer on the NA test was less than on the PS test, suggesting that underadditivity was due to a nontransferable, assimilated corrective response in the NA test with the exposed eye/hand. Possible explanations for intermanual transfer are discussed.  相似文献   

15.
The authors investigated the effects of cognitive representations of movement directions on sensorimotor adaptation performance. Adaptation performance was measured via a pointing experiment in which participants were provided with visual feedback that was distorted along the midsagittal plane (i.e., left-right reversal). Performance was analyzed relative to participants’ individual adaptation gains and 3 groups were subsequently defined (i.e., skilled, average, and poor adapters). The group separation was kept for the Cognitive Measurement of Represented Directions, which was used to analyze participants’ cognitive representation of movement directions. The results showed that skilled adapters, in contrast to poor adapters, possess a global representation of movement directions aligned to the cardinal axes. The cognitive representation structure hence supports the sensorimotor adaptation performance.  相似文献   

16.
The phenomena of prismatically induced “visual capture” and adaptation of the hand were compared. In Experiment 1, it was demonstrated that when the subject’s hand was transported for him by the experimenter (passive movement) immediately preceding the measure of visual capture, the magnitude of the immediate shift in felt limb position (visual capture) was enhanced relative to when the subject moved the hand himself (active movement). In Experiment 2, where the dependent measure was adaptation of the prism-exposed hand, the opposite effect was produced by the active/passive manipulation. It appears, then, that different processes operate to produce visual capture and adaptation. It was speculated that visual capture represents an immediate weighting of visual over proprioceptive input as a result of the greater precision of vision and/or the subject’s tendency to direct his attention more heavily to this modality. In contrast, prism adaptation is probably a recalibration of felt limb position in the direction of vision, induced by the presence of a registered discordance between visual and proprioceptive inputs.  相似文献   

17.
Visually perceived eye level (VPEL) and the ability of subjects to reach with an unseen limb to targets placed at VPEL were measured in a statically pitched visual surround (pitchroom). VPEL was shifted upward and downward by upward and downward room pitch, respectively. Accuracy in reaching to VPEL represented a compromise between VPEL and actual eye level. This indicates that VPEL shifts reflect in part a change in perceived location of objects. When subjects were provided with terminal visual feedback about their reaching, accuracy improved rapidly. Subsequent reaching, with the room vertical, revealed a negative aftereffect (i.e., reaching errors that were opposite those made initially in the pitched room). In a second study, pointing accuracy was assessed for targets located both at VPEL and at other positions. Errors were similar for targets whether located at VPEL or elsewhere. Additionally, pointing responses were restricted to a narrower range than that of the actual target locations. The small size of reaching and pointing errors in both studies suggests that factors other than a change in perceived location are also involved in VPEL shifts.  相似文献   

18.
Two experiments investigated the hypothesis that the experience of manually pointing at visual targets enhances motoric adaptation to prism-displaced vision. Experiment 1 indicated that when adaptation was measured by means of redirected pointing behavior (negative aftereffect) it varied directly with the specificity of the target, the least adaptation occurring when no target was available. This relationship was not observed when adaptation was measured in terms of a shift in the felt position of the prism-exposed hand (proprioceptive shift). Experiment 2 demonstrated that after double the prism-exposure trials used in Experiment 1, target-pointing experience continued to enhance adaptation (as indexed by both types of adaptation measure). In both experiments negative aftereffect was significantly larger than proprioceptive shift for all experimental conditions and the two measures were not correlated. These latter two findings cast doubt on Harris’s notion that negative aftereffect is entirely the result of altered position sense.  相似文献   

19.
In aiming movements the limb position drifts away from the defined target after some trials without visual feedback, a phenomenon defined as proprioceptive drift (PD). There are no studies investigating the association between the posterior parietal cortex (PPC) and PD in aiming movements. Therefore, cathodal and sham transcranial direct current stimulation (tDCS) were applied to the left PPC concomitantly with the performance of movements with or without vision. Cathodal tDCS applied without vision produced a higher level of PD and higher rates of drift accumulation while it decreased peak velocity and maintained the number of error corrections, not affecting movement amplitude. The proprioceptive information seems to produce an effective reference to movement, but with PPC stimulation it causes a negative impact on position.  相似文献   

20.
The effects of movement time and time to visual feedback (feedback time) on prism exposure aftereffects and direct effects were studied. In Experiment 1, the participants' (N = 60) pointing limb became visible early in the movement (.2-s feedback time, and eye-head aftereffects increased with increasing movement time (.5 to 3.0 s), but larger hand-head aftereffects showed little change. Direct effects (terminal error during exposure) showed near-perfect compensation for the prismatic displacement (11.4 diopters) when movement time was short but decreasing compensation with longer movement times. In Experiment 2, participants' (N = 48) eye-head aftereffects increased and their larger hand-head aftereffects decreased with increasing movement time (2.0 and 3.0 s), especially when feedback time increased (.25 and 1.5 s). Direct effects showed increasing overcompensation for longer movement and feedback times. Those results suggest that aftereffects and direct effects measure distinct adaptive processes, namely, spatial realignment and strategic control, respectively. Differences in movement and feedback times evoke different eye -hand coordination strategies and consequent direct effects. Realignment aftereffects also depend upon the coordination strategy deployed, but not all strategies support realignment. Moreover, realignment is transparent to strategic control and, when added to strategic correction, may produce nonadaptive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号